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ABSTRACT
Session types enable the static verification of message-passing pro-

grams. A session type specifies a channel’s protocol as sequences of
messages. Prior work established aminimality result: every process
typable with standard session types can be compiled down to a

process typable using minimal session types: session types without

the sequencing construct. This result justifies session types in terms

of themselves; it holds for a higher-order session 𝜋-calculus, where

values are abstractions (functions from names to processes).

This paper establishes a new minimality result but now for the

session 𝜋-calculus, the language in which values are names and for

which session types have been more widely studied. Remarkably,

this new minimality result can be obtained by composing known

results. We develop optimizations of our new minimality result,

and establish its static and dynamic correctness.

CCS CONCEPTS
• Theory of computation→ Process calculi; Type structures.
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Concurrency, Session Types, Process Calculi, Expressiveness

1 INTRODUCTION
Session types are a type-based approach to statically ensure correct

message-passing programs [5, 6]. A session type stipulates the

sequence and payload of the messages exchanged along a channel.

In this paper, we investigate a minimal formulation of session types

for the 𝜋-calculus, the paradigmatic calculus of concurrency. This

elementary formulation is called minimal session types (MSTs).

The gap between standard and minimal session types concerns

sequentiality in types. Sequentiality, denoted by the action prefix ‘ ; ’,

is arguably the most distinguishing construct of session types. For

instance, in the session type 𝑆 =?(Int); ?(Int); !⟨Bool⟩; end, this con-
struct conveniently specifies a channel protocol that first receives (?)
two integers, then sends (!) a Boolean, and finally ends.

Because sequentiality is so useful for protocol specification and

verification, a natural question is whether it could be recovered

by other means. To this end, Arslanagić et al. [1] defined MSTs

as the sub-class of session types without the ‘ ; ’ construct. They

established a minimality result: every well-typed session process

can be decomposed into a process typable with MSTs. Their result is

inspired by Parrow’s work on trios processes for the 𝜋-calculus [11].
The minimality result justifies session types in terms of themselves,

and shows that sequentiality in types is useful but not indispensable,

because it can be precisely mimicked by the process decomposition.

The minimality result in [1] holds for a higher-order process

calculus calledHO, in which values are only abstractions (functions

from names to processes). HO does not include name passing nor

process recursion, but it can encode them precisely [8, 10]. An

important question left open in [1] is whether the minimality result

holds for the session 𝜋-calculus (dubbed 𝜋 ), the language in which

values are names and for which session types have been more

widely studied from foundational and practical perspectives.

In this paper, we positively answer this question. Our approach

is simple, perhaps even deceptively so. In order to establish the

minimality result for 𝜋 , we compose the decomposition in [1] with

the mutual encodings between HO and 𝜋 given in [8, 10].

𝜋 𝜇𝜋

HO 𝜇HO
D(·)

J · K1

𝑔 J · K2

F ( · )

Figure 1: Decomposi-
tion by composition.

Let 𝜇𝜋 and 𝜇HO denote the pro-

cess languages 𝜋 and HO with

MSTs (rather than with standard

session types). Also, let D(·) de-

note the decomposition function

from HO to 𝜇HO defined in [1].

Kouzapas et al. [8, 10] gave typed

encodings from 𝜋 to HO (denoted

J · K1

𝑔) and from HO to 𝜋 (denoted

J · K2
). Therefore, given D(·), J · K1

𝑔 ,

and J · K2
, to define a decomposition function F ( · ) : 𝜋 → 𝜇𝜋 , it

suffices to follow Figure 1. This is sound for our purposes, because

J · K1

𝑔 and J · K2
preserve sequentiality in processes and their types.

The first contribution of this paper is the decomposition func-

tion F ( · ), whose correctness follows from that of its constituent

functions. F ( · ) is significant, as it provides an elegant, positive

answer to the question of whether the minimality result in [1] holds

for 𝜋 . Indeed, it proves that the values exchanged do not influence

sequentiality in session types: the minimality result of [1] is not

specific to the abstraction-passing language HO.
However, F ( · ) is not entirely satisfactory. A side effect of

composingD(·), J ·K1

𝑔 , and J ·K2
is that the resulting decomposition

of 𝜋 into 𝜇𝜋 is inefficient, as it includes redundant synchronizations.

These shortcomings are particularly noticeable in the treatment

of recursive processes. The second contribution of this paper is an

optimized variant of F ( · ), dubbed F ∗ ( · ), in which we remove

redundant synchronizations and target recursive processes and

variables directly, exploiting the fact that 𝜋 supports recursion

natively.

Contributions. The main contributions of this paper are:

(1) A minimality result for 𝜋 , based on the function F ( · ).
(2) F ∗ ( · ), an optimized variant of F ( · ), without redundant

communications and with native support for recursion.

(3) Examples for F ( · ) and F ∗ ( · ).

Due to space limits, omittedmaterial (definitions, correctness proofs

for F ( · ) and F ∗ ( · ), additional examples) can be found in the

appendices. Throughout the paper, we use red and blue colors

to distinguish elements of the first and second decompositions,

respectively.
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𝑛 ::= 𝑎, 𝑏 | 𝑠, 𝑠

𝑢,𝑤 ::= 𝑛 | 𝑥,𝑦, 𝑧

𝑉 ,𝑊 ::= 𝑢 | 𝜆𝑥. 𝑃 | 𝑥,𝑦, 𝑧

𝑃,𝑄 ::= 𝑢!⟨𝑉 ⟩.𝑃 | 𝑢?(𝑥).𝑃

| 𝑉 𝑢 | 𝑃 | 𝑄 | (𝜈 𝑛)𝑃 | 0 | 𝑋 | 𝜇𝑋 .𝑃

Figure 2: Syntax of HO𝜋 . The sub-language HO lacks
shaded constructs, while 𝜋 lacks boxed constructs.

2 PRELIMINARIES
HO and 𝜋 are actually sub-languages of HO𝜋 [9, 10], for which we

recall its syntax, semantics, and session type system. We also recall

the mutual encodings between HO and 𝜋 [8, 10]. Finally, we briefly

discuss MSTs for HO, and the minimality result in [1].

2.1 HO𝜋 (and its Sub-languages HO and 𝜋)
Fig. 2 gives the syntax of processes 𝑃,𝑄, . . . , values 𝑉 ,𝑊 , . . ., and

conventions for names. Identifiers 𝑎, 𝑏, 𝑐, . . . denote shared names,
while 𝑠, 𝑠, . . . are used for session names. Duality is defined only on

session names, thus 𝑠 = 𝑠 , but 𝑎 = 𝑎. Names (shared or sessions) are
denoted by𝑚,𝑛 . . . , and 𝑥,𝑦, 𝑧, . . . range over variables. We write 𝑥

to denote a tuple (𝑥1, . . . , 𝑥𝑛), and use 𝜖 to denote the empty tuple.

An abstraction 𝜆𝑥. 𝑃 binds 𝑥 to its body 𝑃 . In processes, sequenc-

ing is specified via prefixes. The output prefix, 𝑢!

〈
𝑉
〉
.𝑃 , sends value

𝑉 on name 𝑢, then continues as 𝑃 . Its dual is the input prefix,
𝑢?(𝑥).𝑃 , in which variable 𝑥 is bound. Parallel composition, 𝑃 | 𝑄 ,
reflects the combined behaviour of two processes running simul-

taneously. Restriction (𝜈 𝑛)𝑃 binds the endpoints 𝑛, 𝑛 in process 𝑃 .

Process 0 denotes inaction. Recursive variables and recursive pro-

cesses are denoted 𝑋 and 𝜇𝑋 .𝑃 , respectively. Replication is denoted

by the shorthand notation ∗ 𝑃 , which stands for 𝜇𝑋 .(𝑃 | 𝑋 ).
The sets of free variables, sessions, and names of a process are

denoted fv(𝑃), fs(𝑃), and fn(𝑃). A process 𝑃 is closed if fv(𝑃) = ∅.
We write 𝑢!

〈〉
.𝑃 and 𝑢?().𝑃 when the communication objects are

not relevant. Also, we omit trailing occurrences of 0.
As Fig. 2 details, the sub-languages 𝜋 and HO of HO𝜋 differ

as follows: application 𝑉𝑢 is only present in HO; constructs for
recursion 𝜇𝑋 .𝑃 are present in 𝜋 but not in HO.

The operational semantics of HO𝜋 , enclosed in Figure 3, is

expressed through a reduction relation, denoted −→. Reduction is

closed under structural congruence, ≡, which identifies equivalent

processes from a structural perspective. We write 𝑃{𝑉/𝑥} to denote
the capture-avoiding substitution of variable𝑥 with value𝑉 in 𝑃 .We

write ‘{}’ to denote the empty substitution. In Figure 3, Rule [App]
denotes application, which only concerns names. Rule [Pass] de-
fines a shared or session interaction on channel 𝑛’s endpoints. The

remaining rules are standard.

2.2 Session Types for HO𝜋
Fig. 4 (top) gives the syntax of types. Value types 𝑈 include the

first-order types 𝐶 and the higher-order types 𝐿. Session types are

denoted with 𝑆 and shared types with ⟨𝑆⟩ and ⟨𝐿⟩. We write ⋄ to

(𝜆𝑥. 𝑃) 𝑢 −→ 𝑃{𝑢/𝑥} [App]

𝑛!⟨𝑉 ⟩.𝑃 | 𝑛?(𝑥).𝑄 −→ 𝑃 | 𝑄{𝑉/𝑥} [Pass]

𝑃 −→ 𝑃 ′ ⇒ (𝜈 𝑛)𝑃 −→ (𝜈 𝑛)𝑃 ′ [Res]

𝑃 −→ 𝑃 ′ ⇒ 𝑃 | 𝑄 −→ 𝑃 ′ | 𝑄 [Par]

𝑃 ≡ 𝑄 −→ 𝑄 ′ ≡ 𝑃 ′ ⇒ 𝑃 −→ 𝑃 ′ [Cong]

𝑃1 | 𝑃2 ≡ 𝑃2 | 𝑃1 𝑃1 | (𝑃2 | 𝑃3) ≡ (𝑃1 | 𝑃2) | 𝑃3

𝑃 | 0 ≡ 𝑃 𝑃 | (𝜈 𝑛)𝑄 ≡ (𝜈 𝑛) (𝑃 | 𝑄) (𝑛 ∉ fn(𝑃))

(𝜈 𝑛)0 ≡ 0 𝜇𝑋 .𝑃 ≡ 𝑃{𝜇𝑋 .𝑃/𝑋 } 𝑃 ≡ 𝑄 if 𝑃 ≡𝛼 𝑄

Figure 3: Operational Semantics of HO𝜋 .

𝑈 ::= 𝐶 | 𝐿 𝐶 ::= 𝑆 | ⟨𝑆⟩ | ⟨𝐿⟩
𝐿 ::= 𝑈 →⋄ | 𝑈 ⊸⋄ 𝑆 ::= !⟨𝑈 ⟩; 𝑆 | ?(𝑈 ); 𝑆

| 𝜇t.𝑆 | t | end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑈 ::= 𝐶→⋄ | 𝐶⊸⋄ 𝐶 ::= 𝑀 | ⟨𝑈 ⟩

𝛾 ::= end | t 𝑀 ::= 𝛾 | !⟨𝑈 ⟩;𝛾 | ?(𝑈 );𝛾 | 𝜇t.𝑀

Figure 4: STs for HO𝜋 (top) and MSTs for HO (bottom).

denote the process type. The functional types𝑈 →⋄ and 𝑈 ⊸⋄ de-
note shared and linear higher-order types, respectively. The output
type !⟨𝑈 ⟩; 𝑆 is assigned to a name that first sends a value of type𝑈

and then follows the type described by 𝑆 . Dually, ?(𝑈 ); 𝑆 denotes

an input type. Type end is the termination type. We assume the

recursive type 𝜇t.𝑆 is guarded, i.e., the type variable t only appears

under prefixes. This way, e.g., the type 𝜇t.t is not allowed. The sets
of free/bound variables of a type 𝑆 are defined as usual; the sole

binder is 𝜇t.𝑆 . Closed session types do not have free type variables.

Session types for HO exclude 𝐶 from value types 𝑈 ; session

types for 𝜋 exclude 𝐿 from value types𝑈 and ⟨𝐿⟩ from 𝐶 .

We write 𝑆1 dual 𝑆2 if 𝑆1 is the dual of 𝑆2. Intuitively, duality

converts ! into ? (and vice-versa). This intuitive definition is enough

for our purposes; the formal definition is co-inductive, see [9, 10].

Typing environments are defined below:

Γ ::= ∅ | Γ, 𝑥 : 𝑈 →⋄ | Γ, 𝑢 : ⟨𝑆⟩ | Γ, 𝑢 : ⟨𝐿⟩ | Γ, 𝑋 : Δ

Λ ::= ∅ | Λ, 𝑥 :𝑈 ⊸⋄ Δ ::= ∅ | Δ, 𝑢 :𝑆

Γ, Λ, and Δ satisfy different structural principles. Γ maps variables

and shared names to value types, and recursive variables to session

environments; it admits weakening, contraction, and exchange

principles. While Λ maps variables to linear higher-order types, Δ
maps session names to session types. Both Λ and Δ are only subject

to exchange. The domains of Γ, Λ and Δ (denoted dom(Γ), dom(Λ),
and dom(Δ)) are assumed pairwise distinct.

Given Γ, we write Γ\𝑥 to denote the environment obtained from

Γ by removing the assignment 𝑥 : 𝑈 →⋄, for some𝑈 . This notation

applies similarly to Δ and Λ; we write Δ\Δ′
(and Λ\Λ′

) with the

expected meaning. Notation Δ1 · Δ2 means the disjoint union of Δ1
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and Δ2. We define typing judgements for values 𝑉 and processes 𝑃 :

Γ;Λ;Δ ⊢ 𝑉 ⊲𝑈 Γ;Λ;Δ ⊢ 𝑃 ⊲ ⋄
The judgement on the left says that under environments Γ, Λ, and
Δ value 𝑉 has type 𝑈 ; the judgement on the right says that under

environments Γ, Λ, and Δ process 𝑃 has the process type ⋄. The
typing rules are presented in Appendix B.1.

Type soundness for HO𝜋 relies on two auxiliary notions:

Definition 2.1 (Session Environments: Balanced/Reduction). Let Δ
be a session environment.

• Δ is balanced if whenever 𝑠 : 𝑆1, 𝑠 : 𝑆2 ∈ Δ then 𝑆1 dual 𝑆2.

• We define reduction −→ on session environments as:

Δ, 𝑠 :!⟨𝑈 ⟩; 𝑆1, 𝑠 :?(𝑈 ); 𝑆2 −→ Δ, 𝑠 : 𝑆1, 𝑠 : 𝑆2

Theorem 2.2 (Type Soundness [9]). Suppose Γ; ∅;Δ ⊢ 𝑃 ⊲ ⋄ with
Δ balanced. Then 𝑃 −→ 𝑃 ′ implies Γ; ∅;Δ′ ⊢ 𝑃 ′ ⊲ ⋄ and Δ = Δ′ or
Δ −→ Δ′ with Δ′ balanced.

2.3 Mutual Encodings between 𝜋 and HO
The encodings J · K1

𝑔 : 𝜋 → HO and J · K2
: HO → 𝜋 are typed:

each consists of a translation on processes and a translation on

types. This way, (⟨ · ⟩)1
translates types for first-order processes into

types for higher-order processes, while (⟨ · ⟩)2
operates in the oppo-

site direction—see Figures 5 and 6, respectively. Remarkably, these

translations on processes and types do not alter their sequentiality.

From 𝜋 to HO. To mimic the sending of name𝑤 , the encoding

J · K1

𝑔 encloses𝑤 within the body of an input-guarded abstraction.

The corresponding input process receives this higher-order value,

applies it on a restricted session, and sends the encoded continua-

tion through the session’s dual.

Several auxiliary notions are used to encode recursive processes;

we describe them intuitively (see [10] for full details). The key idea

is to encode recursive processes in 𝜋 using a “duplicator” process in

HO, circumventing linearity by replacing free names with variables.

The parameter 𝑔 is a map from process variables to sequences of

name variables. Also, ||·|| maps sequences of session names into

sequences of variables, and

⌊⌊
·
⌋⌋
∅ maps processes with free names

to processes without free names (but with free variables instead).

The encoding (⟨ · ⟩)1
depends on the auxiliary function

⌊
·
⌋

1

,

defined on value types. Following the encoding on processes, this

mapping on values takes a first-order value type and encodes it

into a linear higher-order value type, which encloses an input

type that expects to receive another higher-order type. Notice how

the innermost higher-order value type is either shared or linear,

following the nature of the given type.

FromHO to 𝜋 . The encoding J·K2
simulates higher-order commu-

nication using first-order constructs, following Sangiorgi [12]. The

idea is to use trigger names, which point towards copies of input-

guarded server processes that should be activated. The encoding of

abstraction sending distinguishes two cases: if the abstraction body

does not contain any free session names (which are linear), then the

server can be replicated. Otherwise, if the value contains session

names then its corresponding server name must be used exactly

once. The encoding of abstraction receiving proceeds inductively,

noticing that the variable is now a placeholder for a first-order

Terms:

J𝑢!⟨𝑤⟩.𝑃K1

𝑔
def
= 𝑢!⟨𝜆𝑧. 𝑧?(𝑥).(𝑥 𝑤)⟩.J𝑃K1

𝑔

J𝑢?(𝑥 :𝐶).𝑄K1

𝑔
def
= 𝑢?(𝑦) .(𝜈 𝑠) (𝑦 𝑠 | 𝑠!⟨𝜆𝑥. J𝑄K1

𝑔⟩.0)

J𝑃 | 𝑄K1

𝑔
def
= J𝑃K1

𝑔 | J𝑄K1

𝑔

J(𝜈 𝑛)𝑃K1

𝑔
def
= (𝜈 𝑛)J𝑃K1

𝑔

J0K1

𝑔
def
= 0

J𝜇𝑋 .𝑃K1

𝑔
def
= (𝜈 𝑠) (𝑠!

〈
𝑉
〉
.0 | 𝑠?(𝑧𝑋 ) .J𝑃K1

𝑔,{𝑋→𝑛̃})
where (𝑛̃ = fn(𝑃))
𝑉 = 𝜆( ||𝑛̃ ||, 𝑦) . 𝑦?(𝑧𝑋 ) .

⌊⌊
J𝑃K1

𝑔,{𝑋→𝑛̃}
⌋⌋
∅

J𝑋 K1

𝑔
def
= (𝜈 𝑠) (𝑧𝑋 (𝑛̃, 𝑠) | 𝑠!⟨𝑧𝑋 ⟩.0) (𝑛̃ = 𝑔(𝑋 ))

Types: ⌊
𝑆
⌋

1 def
= (?((⟨𝑆⟩)1⊸⋄); end)⊸⋄⌊

⟨𝑆⟩
⌋

1 def
= (?(⟨(⟨𝑆⟩)1⟩→⋄); end)⊸⋄

(⟨!⟨𝑈 ⟩; 𝑆⟩)1 def
= !⟨

⌊
𝑈
⌋

1⟩; (⟨𝑆⟩)1

(⟨?(𝑈 ); 𝑆⟩)1 def
= ?(

⌊
𝑈
⌋

1); (⟨𝑆⟩)1

(⟨⟨𝑆⟩⟩)1 def
= ⟨(⟨𝑆⟩)1⟩ (⟨𝜇t.𝑆⟩)1 def

= 𝜇t.(⟨𝑆⟩)1

(⟨end⟩)1 def
= end (⟨t⟩)1 def

= t

Figure 5: Typed encoding of 𝜋 into HO, selection from [10].
Above, fn(𝑃) is a lexicographically ordered sequence of free
names in 𝑃 . Maps || · || and

⌊⌊
·
⌋⌋
𝜎
are in Def. B.2 and Fig. 17.

Terms:

J𝑢!⟨𝜆𝑥 .𝑄⟩.𝑃K2 def
={

(𝜈 𝑎) (𝑢!⟨𝑎⟩.(J𝑃K2 | ∗ 𝑎?(𝑦).𝑦?(𝑥).J𝑄K2)) if fs(𝑄) = ∅
(𝜈 𝑎) (𝑢!⟨𝑎⟩.(J𝑃K2 | 𝑎?(𝑦) .𝑦?(𝑥).J𝑄K2)) otherwise

J𝑢?(𝑥) .𝑃K2 def
= 𝑢?(𝑥) .J𝑃K2

J𝑥 𝑢K2 def
= (𝜈 𝑠) (𝑥 !⟨𝑠⟩.𝑠!⟨𝑢⟩.0)

J(𝜆𝑥. 𝑃) 𝑢K2 def
= (𝜈 𝑠) (𝑠?(𝑥) .J𝑃K2 | 𝑠!⟨𝑢⟩.0)

Types:

(⟨!⟨𝑆⊸⋄⟩; 𝑆1⟩)2 def
= !

〈
⟨?((⟨𝑆⟩)2); end⟩

〉
; (⟨𝑆1⟩)2

(⟨?(𝑆⊸⋄); 𝑆1⟩)2 def
= ?

(
⟨?((⟨𝑆⟩)2); end⟩

)
; (⟨𝑆1⟩)2

Figure 6: Typed encoding of HO into 𝜋 [10].

name. The encoding of application is also in two cases; both of

them depend on the creation of a fresh session, which is used to

pass around the applied name.
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2.4 Minimal Session Types for HO
The syntax of MSTs for HO is in Fig. 4 (bottom). We write 𝜇HO to

denote HO with MSTs. The decomposition D(·) in [1] relies cru-

cially on the ability of communicating tuples of values. Hence, value

types are of the form 𝐶→⋄ and 𝐶⊸⋄. Similarly, minimal session

types for output and input are of the form !⟨𝑈 ⟩; end and ?(𝑈 ); end:
they communicate tuples of values but lack a continuation.

Following Parrow [11], D(·) is defined in terms of a breakdown
function B𝑘

𝑥̃

(
·
)
, which translates a process into a composition of

trios processes (or simply trios). A trio is a process with exactly three

nested prefixes. If 𝑃 is a sequential process with 𝑘 nested actions,

then D(𝑃) will contain 𝑘 trios running in parallel: each trio in

D(𝑃) will enact exactly one prefix from 𝑃 ; the breakdown function

must be carefully designed to ensure that trios trigger each other in

such a way that D(𝑃) preserves the prefix sequencing in 𝑃 . While

trios decompositions elegantly induce processes typable with MSTs,

they are not goal in themselves; rather, they offer one possible path

to better understand sequentiality in session types.

We use some useful terminology for trios [11]. The context of a
trio is a tuple of variables 𝑥 , possibly empty, which makes variable

bindings explicit. We use a reserved set of propagator names (or
simply propagators), denoted by 𝑐𝑘 , 𝑐𝑘+1

, . . ., to carry contexts and

trigger the subsequent trio. Propagators with recursive types are

denoted by 𝑐𝑟
𝑘
, 𝑐𝑟
𝑘+1

, . . .. We say that a leading trio is the one that
receives a context, performs an action, and triggers the next trio; a

control trio only activates other trios.

The breakdown function works on both processes and values.

The breakdown of process 𝑃 is denoted by B𝑘
𝑥̃

(
𝑃
)
, where 𝑘 is the

index for the propagators 𝑐𝑘 , and 𝑥 is the context to be received by

the previous trio. Similarly, the breakdown of a value 𝑉 is denoted

by V𝑘
𝑥̃

(
𝑉
)
. Table 1 gives the breakdown function defined in [1] for

the sub-language of HO without recursion—this is the so-called

core fragment. In the figure, we include side conditions that use

the one-line conditional 𝑥 = (𝑐) ? 𝑠1: 𝑠2 to express that 𝑥 = 𝑠1 if

condition 𝑐 is true, and 𝑥 = 𝑠2 otherwise. Notice that for session

types we have either 𝐶 = 𝑆 or 𝐶 = ⟨𝑆⟩.
To formally define D(·) in terms of B𝑘

𝑥̃

(
·
)
, we need some no-

tation. Let 𝑢 = (𝑎, 𝑏, 𝑠, 𝑠 ′, . . .) be a finite tuple of names. We shall

write init(𝑢) to denote the tuple (𝑎1, 𝑏1, 𝑠1, 𝑠
′
1
, . . .). We say that a

process has been initialized if all of its names have some index.

Definition 2.3 (Decomposing Processes [1]). Let 𝑃 be a closed HO
process such that𝑢 = fn(𝑃). The decomposition of 𝑃 , denotedD(𝑃),
is defined as:

D(𝑃) = (𝜈 𝑐̃)
(
𝑐𝑘 !⟨⟩.0 | B𝑘

𝜖

(
𝑃𝜎

) )
where: 𝑘 > 0; 𝑐̃ = (𝑐𝑘 , . . . , 𝑐𝑘+|𝑃 |−1

); 𝜎 = {init(𝑢̃)/𝑢}; and the break-

down function B𝑘
𝑥̃

(
·
)
, is as defined in Table 1.

Definition 2.4 (Decomposing Session Types). The decomposition
function on the types of Fig. 4, denoted G(·), is defined in Fig. 7.

As already mentioned, theminimality result in [1] is that if 𝑃 is a

well-typed HO process then D(𝑃) is a well-typed 𝜇HO process. It

attests that the sequentiality in the session types for 𝑃 is appropri-

ately accommodated by the decomposition D(𝑃). Its proof relies
on an auxiliary result establishing the typability of B𝑘

𝑥̃

(
𝑃
)
.

G(!⟨𝑈 ⟩; 𝑆) =
{

!⟨G(𝑈 )⟩; end if 𝑆 = end

!⟨G(𝑈 )⟩; end ,G(𝑆) otherwise

G(?(𝑈 ); 𝑆) =
{

?(G(𝑈 )); end if 𝑆 = end

?(G(𝑈 )); end ,G(𝑆) otherwise

G(𝐶⊸⋄) = G(𝐶)⊸⋄ G(end) = end

G(𝐶→⋄) = G(𝐶)→⋄ G(⟨𝑈 ⟩) = ⟨G(𝑈 )⟩
G(𝑆1, . . . , 𝑆𝑛) = G(𝑆1), . . . ,G(𝑆𝑛)

Figure 7: Decomposition of types (cf. Def. 2.4)

Theorem 2.5 (Minimality Result [1]). Let 𝑃 be a closed HO
process with 𝑢 = fn(𝑃) and 𝜎 = {init(𝑢)/𝑢}. If Γ; ∅;Δ ⊢ 𝑃 ⊲ ⋄ then

G(Γ𝜎); ∅; G(Δ𝜎) ⊢ D(𝑃) ⊲ ⋄

Having summarized the results on which our developments

stand, we now move on to establish the minimality result but for 𝜋 .

3 DECOMPOSE BY COMPOSITION
We define a decomposition function F ( · ) : 𝜋 → 𝜇𝜋 , given in terms

of a breakdown function denoted A𝑘
𝑥̃

(
·
)
𝑔 (cf. Tab. 2). Following

Figure 1, this breakdown function will result from the composition

of J · K1

𝑔 , B𝑘
𝑥̃

(
·
)
, and J · K2

, i.e.,A𝑘
𝑥̃

(
·
)
𝑔 = JB𝑘

𝑥̃

(
J · K1

𝑔

)
K2
. Using F ( · ),

we obtain a minimality result for 𝜋 , given by Theorem 2.

3.1 Key Idea
Conceptually, F ( · ) can be obtained in two steps: first, the compo-

sition B𝑘
𝑥̃

(
J · K1

𝑔

)
, which returns a process in 𝜇HO; second, a step

that transforms that 𝜇HO process into a 𝜇𝜋 process using J · K2
. We

illustrate these two steps for output and input processes.

Output Let us write A ′𝑘
𝑥̃

(
·
)
𝑔 to denote the (partial) composition

involved in the first step. Given 𝑃 = 𝑢𝑖 !⟨𝑤 𝑗 ⟩.𝑄 , we first obtain:

A ′𝑘
𝑥̃

(
𝑢𝑖 !⟨𝑤 𝑗 ⟩.𝑄

)
𝑔 = 𝑐𝑘?(𝑥) .𝑢𝑖 !

〈
𝑊

〉
.𝑐𝑘+3

!⟨𝑥⟩ | A ′𝑘+3

𝑥̃

(
𝑄𝜎

)
𝑔

where 𝜎 = (𝑢𝑖 : 𝑆) ? {𝑢𝑖+1/𝑢𝑖 }: {} and
𝑊 = 𝜆𝑧1 .

(
𝑐𝑘+1

!⟨⟩ | 𝑐𝑘+1
?().𝑧1?(𝑥).𝑐𝑘+2

!⟨𝑥⟩ | 𝑐𝑘+2
?(𝑥).

(
𝑥 𝑤

) )
We have that A ′𝑘

𝑥̃

(
𝑢𝑖 !⟨𝑤 𝑗 ⟩.𝑄

)
𝑔 is a process in 𝜇HO. The second

step uses J · K2
to convert it into the following 𝜇𝜋 process:

𝑐𝑘?(𝑥) .(𝜈 𝑎)
(
𝑢𝑖 !⟨𝑎⟩.

(
𝑐𝑘+3

!⟨𝑥⟩ | A𝑘+3

𝑥̃

(
𝑄𝜎

)
𝑔 |

𝑎?(𝑦).𝑦?(𝑧1) .𝑐𝑘+1
!⟨𝑧1⟩ | 𝑐𝑘+1

?(𝑧1) .𝑧1?(𝑥).𝑐𝑘+2
!⟨𝑥⟩ |

𝑐𝑘+2
?(𝑥).(𝜈 𝑠)

(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤⟩

) ) )
The subprocess mimicking the output action on 𝑢𝑖 is guarded

by an input on 𝑐𝑘 . Then, the output of𝑤 on 𝑢𝑖 action is delegated

to a different channel through several redirections: first a private

name 𝑎 is sent, then along 𝑎 name for 𝑧1 is received and so on; until,

finally, the breakdown of 𝑤 is sent on name 𝑠1. These names are

propagated through local trios. We can see that upon action on 𝑢𝑖
unmodified context 𝑥 is sent to breakdown of continuation 𝑄 .

We say names typed with tail-recursive type are recursive names.
Another form of output is when both 𝑢𝑖 and𝑤 𝑗 are recursive. This

case is similar to the one just discussed, and omitted from Tab. 2.
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𝑃 B𝑘
𝑥̃

(
𝑃
)

𝑢𝑖 !⟨𝑉 ⟩.𝑄 𝑐𝑘?(𝑥).𝑢𝑖 !
〈
𝑉
〉
.𝑐𝑘+𝑙+1

!⟨̃𝑧⟩ | B𝑘+𝑙+1

𝑧

(
𝑄𝜎

) 𝑉 = V𝑘+1

𝑦̃

(
𝑉𝜎

)
𝑦 = fv(𝑉 ) 𝑧̃ = fv(𝑄)
𝑙 = |𝑉 | 𝜎 = next(𝑢𝑖 )

𝑢𝑖?(𝑦) .𝑄 𝑐𝑘?(𝑥).𝑢𝑖?(𝑦) .𝑐𝑘+1
!⟨𝑥 ′⟩ | B𝑘+1

𝑥̃ ′
(
𝑄𝜎

) 𝑥 ′ = fv(𝑄)
𝜎 = next(𝑢𝑖 )

𝑉 𝑢𝑖 𝑐𝑘?(𝑥).V𝑘+1

𝑥̃

(
𝑉
)
𝑚

𝑢𝑖 : 𝐶 𝑚 = (𝑢𝑖 , . . . , 𝑢𝑖+|G(𝐶) |−1
)

𝑥 = fv(𝑉 )

(𝜈 𝑠 : 𝐶)𝑃 ′ (𝜈 𝑠̃ : G(𝐶)) B𝑘
𝑥̃

(
𝑃 ′𝜎

) 𝑠̃ = (𝑠1, . . . , 𝑠 |G (𝐶) |)
𝜎 = (𝐶 = 𝑆) ? {𝑠1𝑠1/𝑠𝑠}: {𝑠1/𝑠} 𝑥 = fv(𝑃 ′)

𝑄 | 𝑅 𝑐𝑘?(𝑥).𝑐𝑘+1
!⟨𝑦⟩.𝑐𝑘+𝑙+1

!⟨̃𝑧⟩ | B𝑘+1

𝑦̃

(
𝑄
)
| B𝑘+𝑙+1

𝑧

(
𝑅
)

𝑦 = fv(𝑄) 𝑧̃ = fv(𝑅) 𝑙 = |𝑄 |

0 𝑐𝑘?().0

𝑉 V𝑘
𝑥̃

(
𝑉
)

𝑦 𝑦

𝜆𝑢 : 𝐶{ . 𝑃 𝜆𝑦. (𝜈 𝑐̃)
(
𝑐𝑘 !⟨𝑥⟩ | B𝑘

𝑥̃

(
𝑃{𝑦1/𝑦}

) ) 𝑥 = fv(𝑉 )
𝑦 = (𝑦1, . . . , 𝑦 |G (𝐶) |)
𝑐̃ = ({=→) ? (𝑐𝑘 , . . . , 𝑐𝑘+|𝑃 |−1

): 𝜖

Table 1: The breakdown function for HO processes and values (core fragment from [1]).

𝐶 ::= 𝑀 | ⟨𝑀⟩
𝛾 ::= end | t

𝑀 ::= 𝛾 | !⟨𝐶⟩;𝛾 | ?(𝐶);𝛾 | 𝜇t.𝑀

Figure 8: Minimal Session Types for 𝜋 (cf. Definition 3.1)

Input The breakdown of 𝑢𝑖?(𝑤) .𝑄 as follows:

𝑐𝑘?(𝑥).𝑢𝑖?(𝑦).𝑐𝑘+1
!⟨𝑥,𝑦⟩ |

(𝜈 𝑠1)
(
𝑐𝑘+1

?(𝑥,𝑦).𝑐𝑘+2
!⟨𝑦⟩.𝑐𝑘+3

!⟨𝑥⟩ |
𝑐𝑘+2

?(𝑦) .(𝜈 𝑠)
(
𝑦!⟨𝑠⟩.𝑠!⟨𝑠1⟩) |

𝑐𝑘+3
?(𝑥).(𝜈 𝑎)

(
𝑠1!⟨𝑎⟩.

(
𝑐𝑘+𝑙+4

!⟨⟩ | 𝑐𝑘+𝑙+4
?().0 |

𝑎?(𝑦′) .𝑦′?(𝑤) .
(
𝑐𝑘+4

!⟨𝑥⟩ | A𝑘+4

𝑥

(
𝑄{𝑤1/𝑤}𝜎

)
𝑔

) ) ) )
The activation on 𝑐𝑘 enables the input on 𝑢𝑖 . After several redirec-

tions, the actual input of variables𝑤 is on a name received for 𝑦′,
which binds them in the decomposition of𝑄 . Hence, context 𝑥 does

not get extended for an inductive call: it only gets extended locally

(propagated by 𝑐𝑘+1
). Indeed, in the core fragment, the context is

always empty and propagators only enable subsequent actions. The

context does play a role in breaking down recursion: variables 𝑧𝑋
(generated to encode recursion) get propagated as context.

3.2 Formal Definition
Definition 3.1 (Minimal Session Types, MSTs). Minimal session

types for 𝜋 are defined in Figure 8.

The breakdown function A𝑘
𝑥̃

(
·
)
𝑔 for all constructs of 𝜋 is given

in Table 2, using the following definitions.

Definition 3.2 (Degree of a Process). The degree of a 𝜋 process 𝑃 ,

denoted ⌊𝑃⌉, is defined as:

⌊𝑢𝑖 !⟨𝑤 𝑗 ⟩.𝑄⌉ = ⌊𝑄⌉ + 3 ⌊(𝜈 𝑠 : 𝑆)𝑄⌉ = ⌊𝑄⌉ ⌊0⌉ = 1

⌊𝑢𝑖?(𝑥 : 𝐶) .𝑄⌉ = ⌊𝑄⌉ + 5 ⌊𝑄 | 𝑅⌉ = ⌊𝑄⌉ + ⌊𝑅⌉ + 1

⌊𝑋 ⌉ = 4 ⌊𝜇𝑋 .𝑄⌉ = ⌊𝑄⌉ + 4

Definition 3.3 (Predicates on Types and Names). Let𝐶 be a session

type. We write tr(𝐶) to indicate that 𝐶 is a tail-recursive session

type. Also, given 𝑢 : 𝐶 , we write lin(𝑢) if 𝐶 = 𝑆 and ¬tr(𝑆).

Definition 3.4 (Subsequent index substitution). Let 𝑛𝑖 be an in-

dexed name. We define next(𝑛𝑖 ) = (lin(𝑛𝑖 )) ? {𝑛𝑖+1/𝑛𝑖 }: {}.

We define how to obtain MSTs for 𝜋 from standard session types:

Definition 3.5 (Decomposing First-Order Types). The decompo-

sition function H( · ) on finite types, obtained by combining the

mappings (⟨ · ⟩)1,G(·), and (⟨ · ⟩)2
, is defined in Fig. 9 (top, where omit-

ted cases are defined homomorphically). It is extended to account

for recursive session types in Fig. 9 (center).

The auxiliary function R ′★( · ), given in Fig. 9 (bottom), is used

in Tab. 2 to decompose guarded tail-recursive types: it skips session

prefixes until a type of form 𝜇t.𝑆 is encountered; when that occurs,

the recursive type is decomposed using R ′( · ).

We are finally ready to define the decomposition function F ( · ),
the analog of Definition 2.3 but for processes in 𝜋 :

Definition 3.6 (Process Decomposition). Let 𝑃 be a closed 𝜋 process

with 𝑢 = fn(𝑃) and 𝑣̃ = rn(𝑃). Given the breakdown function

A𝑘
𝑥̃

(
·
)
𝑔 in Table 2, the decomposition F (𝑃) is defined as:

F (𝑃) = (𝜈 𝑐̃) (𝜈 𝑐̃𝑟 )
(∏
𝑟 ∈𝑣̃

𝑃𝑟 | 𝑐𝑘 !⟨⟩.0 | A𝑘
𝜖

(
𝑃𝜎

)
𝑔

)
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𝑃 A𝑘
𝑥̃

(
𝑃
)
𝑔

𝑢𝑖 !⟨𝑤 𝑗 ⟩.𝑄
𝑐𝑘?(𝑥).(𝜈 𝑎)

(
𝑢𝑖 !⟨𝑎⟩.

(
𝑐𝑘+3

!⟨𝑥⟩ | A𝑘+3

𝑥̃

(
𝑄𝜎

)
𝑔 |

𝑎?(𝑦).𝑦?(𝑧1) .𝑐𝑘+1
!⟨𝑧1⟩ | 𝑐𝑘+1

?(𝑧1) .𝑧1?(𝑥).𝑐𝑘+2
!⟨𝑥⟩ |

𝑐𝑘+2
?(𝑥) .(𝜈 𝑠)

(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤⟩

) ) ) 𝑤 𝑗 : 𝐶

𝑤 = (𝑤 𝑗 , . . . ,𝑤 𝑗+|H(𝐶) |−1
)

𝜎 = next(𝑢𝑖 )

𝑢𝑖?(𝑤) .𝑄

𝑐𝑘?(𝑥).𝑢𝑖?(𝑦) .𝑐𝑘+1
!⟨𝑥,𝑦⟩ |

(𝜈 𝑠1)
(
𝑐𝑘+1

?(𝑥,𝑦) .𝑐𝑘+2
!⟨𝑦⟩.𝑐𝑘+3

!⟨𝑥⟩ |
𝑐𝑘+2

?(𝑦).(𝜈 𝑠)
(
𝑦!⟨𝑠⟩.𝑠!⟨𝑠1⟩) |

𝑐𝑘+3
?(𝑥).(𝜈 𝑎)

(
𝑠1!⟨𝑎⟩.

(
𝑐𝑘+𝑙+4

!⟨⟩ | 𝑐𝑘+𝑙+4
?().0 | 𝑄𝑥̃

) ) )
where:

𝑄𝑥̃ = 𝑎?(𝑦′).𝑦′?(𝑤).
(
𝑐𝑘+4

!⟨𝑥⟩ | A𝑘+4

𝑥

(
𝑄{𝑤1/𝑤}𝜎

)
𝑔

)
𝑤 : 𝐶

𝑤 = (𝑤1, . . . ,𝑤 |H(𝐶) |)
𝑙 = ⌊𝑄⌉
𝜎 = next(𝑢𝑖 )

𝑟𝑖 !⟨𝑤 𝑗 ⟩.𝑃

𝑐𝑘?(𝑥).(𝜈 𝑎1)𝑐𝑟 !⟨𝑎1⟩.
(
A𝑘+3

𝑥̃

(
𝑃
)
𝑔 | 𝑎1?(𝑦1) .𝑦1?(𝑧̃) .𝑊

)
where:

𝑊 = (𝜈 𝑎2)
(
𝑧𝑓 (𝑆) !⟨𝑎2⟩.

(
𝑐𝑘+3

!⟨𝑥⟩.𝑐𝑟 ?(𝑏).(𝜈 𝑠)
(
𝑏!⟨𝑠⟩.𝑠!⟨̃𝑧⟩

)
|

𝑎2?(𝑦2) .𝑦2?(𝑧′
1
).
(
𝑐𝑘+1

!⟨⟩ |
𝑐𝑘+1

?().𝑧′
1
?(𝑥).𝑐𝑘+2

!⟨𝑥⟩ | 𝑐𝑘+2
?(𝑥) .(𝜈 𝑠 ′)

(
𝑥 !⟨𝑠 ′⟩.𝑠 ′!⟨𝑤⟩

) ) ) )
𝑟 : 𝑆 ∧ tr(𝑆)
𝑧̃ = (𝑧1, . . . , 𝑧 |R′★ (𝑆) |)
𝑐̃ = (𝑐𝑘+1

, 𝑐𝑘+2
)

𝑤 : 𝐶 ∧𝑤 = (𝑤 𝑗 , . . . ,𝑤 𝑗+|H(𝐶) |−1
)

𝑟𝑖?(𝑤).𝑃

𝑐𝑘?(𝑥).(𝜈 𝑎1)
(
𝑐𝑟 !⟨𝑎1⟩.

(
(𝜈 𝑠1)

(
𝑐𝑘+1

?(𝑦) .𝑐𝑘+2
!⟨𝑦⟩.𝑐𝑘+3

!⟨⟩ |
𝑐𝑘+2

?(𝑦) .(𝜈 𝑠)
(
𝑦!⟨𝑠⟩.𝑠!⟨𝑠1⟩) |

𝑐𝑘+3
?().(𝜈 𝑎2)

(
𝑠1!⟨𝑎2⟩.

(
𝑐𝑘+𝑙+4

!⟨⟩ | 𝑐𝑘+𝑙+4
?().0 |

𝑎2?(𝑦2).𝑦2?(𝑤) .
(
𝑐𝑘+4

!⟨𝑥⟩ | A𝑘+4

𝑥̃

(
𝑃{𝑤1/𝑤}

)
𝑔

) ) )
|

𝑎1?(𝑦1) .𝑦1?(𝑧̃) .𝑧𝑓 (𝑆)?(𝑦) .
𝑐𝑘+1

!⟨𝑦⟩.𝑐𝑟 ?(𝑏).(𝜈 𝑠 ′)
(
𝑏!⟨𝑠 ′⟩.𝑠 ′!⟨̃𝑧⟩

) ) ) )
𝑟 : 𝑆 ∧ tr(𝑆)
𝑧̃ = (𝑧1, . . . , 𝑧 |R′★ (𝑆) |)
𝑙 = ⌊𝑃⌉
𝑤 : 𝐶 ∧𝑤 = (𝑤1, . . . ,𝑤 |H(𝐶) |)

(𝜈 𝑠 : 𝐶)𝑃 ′ (𝜈 𝑠̃ : H(𝐶)) A𝑘
𝑥̃

(
𝑃 ′𝜎

)
𝑔 𝑠̃ = (𝑠1, . . . , 𝑠 |H(𝐶) |) 𝜎 = {𝑠1𝑠1/𝑠𝑠}

(𝜈 𝑟 : 𝜇t.𝑆)𝑃 ′ (𝜈 𝑟̃ : R ′(𝑆)) 𝑐𝑟 ?(𝑏) .(𝜈 𝑠 ′)
(
𝑏!⟨𝑠 ′⟩.𝑠 ′!⟨̃𝑟 ⟩

)
| 𝑐𝑟 ?(𝑏).(𝜈 𝑠 ′)

(
𝑏!⟨𝑠 ′⟩.𝑠 ′!⟨̃𝑟 ⟩

)
| A𝑘

𝑥̃

(
𝑃 ′𝜎

)
𝑔

tr(𝜇t.𝑆) 𝜎 = {𝑟1𝑟1/𝑟𝑟 }
𝑟̃ = (𝑟1, . . . , 𝑟 |R′ (𝑆) |)
𝑟̃ = (𝑟1, . . . , 𝑟 |R′ (𝑆) |)

𝑄1 | 𝑄2
𝑐𝑘?(𝑥).𝑐𝑘+1

!⟨𝑦⟩.𝑐𝑘+𝑙+1
!⟨𝑧⟩ | A𝑘+1

𝑦̃

(
𝑄1

)
𝑔 | A𝑘+𝑙+1

𝑧

(
𝑄2

)
𝑔 𝑦 = fv(𝑄1) 𝑧̃ = fv(𝑄2) 𝑙 = ⌊𝑄⌉

0 𝑐𝑘?().0

𝜇𝑋 .𝑃

(𝜈 𝑠1)
(
𝑐𝑘?(𝑥) .𝑐𝑘+1

!⟨𝑥⟩.𝑐𝑘+3
!⟨𝑥⟩ |

𝑐𝑘+1
?(𝑥).(𝜈 𝑎1)

(
𝑠1!⟨𝑎1⟩.

(
𝑐𝑘+2

!⟨⟩ | 𝑐𝑘+2
?().0 |

𝑐𝑘+3
?(𝑥) .𝑠1?(𝑧𝑥 ) .𝑐𝑘+4

!⟨𝑥, 𝑧𝑥 ⟩ |
A𝑘+4

𝑥̃,𝑧𝑥

(
𝑃
)
𝑔,{𝑋→𝑛̃} |

∗𝑎1?(𝑦′
1
).𝑦′

1
?( ||𝑛1 ||, . . . , ||𝑛𝑚 ||, 𝑦1) .𝑃

) ) )
where:

𝑃 = (𝜈 𝑐̃)
( ∏

0<𝑖≤𝑚 𝑐𝑛𝑖 ?(𝑏) .(𝜈 𝑠 ′)
(
𝑏!⟨𝑠 ′⟩.𝑠 ′!⟨||𝑛𝑖 ||⟩

)
| 𝑐𝑘+2

!⟨𝑥⟩
𝑐𝑘+2

?(𝑥).𝑦1?(𝑧𝑥 ) .𝑐𝑘+3
!⟨𝑥, 𝑧𝑥 ⟩ |

⌊⌊
A𝑘+3

𝑥̃,𝑧𝑥

(
𝑃
)
𝑔,{𝑋→𝑛̃}

⌋⌋
𝑐,𝑐𝑟

)

𝑛 = fn(𝑃)
𝑚 = |𝑛 |
||𝑛 || = ( ||𝑛1 ||, . . . , ||𝑛𝑚 ||)
𝑖 ∈ {1, . . . ,𝑚}.

||𝑛𝑖 || : 𝑆𝑖
||𝑛𝑖 || = ( ||𝑛𝑖

1
||, . . . , ||𝑛𝑖|H(𝑆𝑖 ) | ||)

𝑐̃ = (𝑐𝑘+2
, . . . , 𝑐𝑘+⌊ ||𝑃 ||1

𝑔,{𝑋→𝑛̃} ⌉+1
)

𝑐̃𝑟 =
⋃

𝑣∈𝑛 𝑐
𝑣

𝑋

(𝜈 𝑠1)
(
𝑐𝑘?(𝑧𝑥 ) .𝑐𝑘+1

!⟨𝑧𝑥 ⟩.𝑐𝑘+2
!⟨𝑧𝑥 ⟩ | 𝑐𝑘+2

?(𝑧𝑥 ).𝑠1!⟨𝑧𝑥 ⟩.𝑐𝑘+3
!⟨⟩ | 𝑐𝑘+3

?().0
𝑐𝑘+1

?(𝑧𝑥 ) .(𝜈 𝑎1)
(
𝑐𝑛1

!⟨𝑎1⟩.
(
𝑎1?(𝑦1) .𝑦1?(𝑧̃1) . . . . (𝜈 𝑎 𝑗 )𝑄

) ) )
where:

𝑄 =
(
𝑐𝑛 𝑗

!⟨𝑎 𝑗 ⟩.
(
𝑎 𝑗 ?(𝑦 𝑗 ).𝑦 𝑗 ?(𝑧̃ 𝑗 ).(𝜈 𝑠 ′)

(
𝑧𝑥 !⟨𝑠 ′⟩.𝑠 ′!⟨̃𝑧1, . . . , 𝑧̃ 𝑗 , 𝑠1⟩

) ) )
𝑛 = 𝑔(𝑋 )
|𝑛 | = 𝑗

𝑖 ∈ {1, . . . , 𝑗}
𝑛𝑖 : 𝑆 ∧ tr(𝑆𝑖 )
𝑧𝑖 = (𝑧𝑖

1
, . . . , 𝑧𝑖|R′★ (𝑆𝑖 ) |

)

Table 2: Decompose by composition: Breakdown function A𝑘
𝑥̃

(
·
)
𝑔 for 𝜋 processes (cf. Definition 3.6).

where: 𝑘 > 0, 𝑐̃ = (𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉−1
); 𝑐𝑟 =

⋃
𝑟 ∈𝑣̃ 𝑐

𝑟
; 𝜎 = {init(𝑢̃)/𝑢};

𝑃𝑟 = 𝑐𝑟 ?(𝑏).(𝜈 𝑠)
(
𝑏!⟨𝑠⟩.𝑠!⟨̃𝑟 ⟩

)
with 𝑟 : 𝑆 and 𝑟̃ = 𝑟1, . . . , 𝑟 |G (𝑆) | .

3.3 Examples
Example 3.7 (A Process with Delegation). Consider a process 𝑃

that implements channels𝑤 (with type𝑇 =?(Int); !⟨Bool⟩; end) and

𝑢 (with type 𝑆 =!⟨𝑇 ⟩; end):
𝑃 = (𝜈 𝑢 : 𝑆)

(
𝑢!⟨𝑤⟩.𝑤?(𝑡) .𝑤 !⟨odd(𝑡)⟩.0︸                            ︷︷                            ︸

𝐴

| 𝑢?(𝑥) .𝑥 !⟨5⟩.𝑥?(𝑏) .0︸                   ︷︷                   ︸
𝐵

)
By Def. 3.2, ⌊𝑃⌉ = 25. Then, the decomposition of 𝑃 into a collection

of first-order processes typed with minimal session types is:

F (𝑃) = (𝜈 𝑐1, . . . , 𝑐25)
(
𝑐1!⟨⟩.0 | (𝜈 𝑢1)A1

𝜖

(
(𝐴 | 𝐵)𝜎 ′) ),
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H(⟨𝑆⟩) = ⟨H (𝑆)⟩

H (!⟨𝑆⟩; 𝑆 ′) =
{
𝑀 if 𝑆 ′ = end

𝑀,H(𝑆 ′) otherwise

where𝑀 =!

〈
⟨?(?(⟨?(H (𝑆)); end⟩); end); end⟩

〉
; end

H(?(𝑆); 𝑆 ′) =
{
𝑀 if 𝑆 ′ = end

𝑀,H(𝑆 ′) otherwise

where𝑀 =?(⟨?(?(⟨?(H (𝑆)); end⟩); end); end⟩); end
H(end) = end

H(𝑆1, . . . , 𝑆𝑛) = H(𝑆1), . . . ,H(𝑆𝑛)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

H(𝜇t.𝑆) =
{
R ′(𝑆) if 𝜇t.𝑆 is tail-recursive

𝜇t.H(𝑆) otherwise

R ′(!⟨𝑆⟩; 𝑆 ′) = 𝜇t.!
〈
⟨?(?(⟨?(H (𝑆)); end⟩); end); end⟩

〉
; t,R ′(𝑆 ′)

R ′(?(𝑆); 𝑆 ′) = 𝜇t.?
(
⟨?(?(⟨?(H (𝑆)); end⟩); end); end⟩

)
; t,R ′(𝑆 ′)

H (t) = t R ′(t) = 𝜖

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R ′★(?(𝑆); 𝑆 ′) = R ′★(𝑆 ′) R ′★(!⟨𝑆⟩; 𝑆 ′) = R ′★(𝑆 ′)
R ′★(𝜇t.𝑆) = R ′★(𝑆)

Figure 9: Decomposition of types H( · ) (cf. Def. 3.5)

A2

𝜖

(
𝐴
)
= 𝑐2?().(𝜈 𝑎1)

(
𝑢1!⟨𝑎1⟩.

(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑎1?(𝑦1).𝑦1?(𝑧1).𝑐3!⟨𝑧1⟩ | 𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ |
𝑐4?(𝑥) .(𝜈 𝑠)

(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

) ) )
A5

𝜖

(
𝐴′) = 𝑐5?().𝑤1?(𝑦2).𝑐6!⟨𝑦2⟩ | (𝜈 𝑠1)

(
𝑐6?(𝑦2) .𝑐7!⟨𝑦2⟩.𝑐8!

〈〉
|

𝑐7?(𝑦2).(𝜈 𝑠 ′)
(
𝑦2!⟨𝑠 ′⟩.𝑠 ′!⟨𝑠1⟩.0

) )
|

𝑐8?().(𝜈 𝑎2)
(
𝑠1!⟨𝑎2⟩.

(
𝑐10!⟨⟩ | 𝑐10?().0 |

𝑎2?(𝑦3).𝑦3?(𝑡1) .
(
𝑐9!⟨⟩ | A9

𝜖

(
𝐴′′) ) ) )

A9

𝜖

(
𝐴′′) = 𝑐9?().(𝜈 𝑎)

(
𝑤2!⟨𝑎⟩.

(
𝑐12!⟨⟩ | 𝑐12?().0 |

𝑎?(𝑦) .𝑦?(𝑧1) .𝑐11!⟨𝑧1⟩ | 𝑐10?(𝑧1) .𝑧1?(𝑥).𝑐11!⟨𝑥⟩ |
𝑐11?(𝑥) .(𝜈 𝑠)

(
𝑥 !⟨𝑠⟩.𝑠!⟨odd(𝑡)⟩

) ) )
Figure 10: Breakdown for process 𝐴 in Exam. 3.7.

where 𝜎 = init(fn(𝑃)) and 𝜎 ′ = 𝜎 · {𝑢1𝑢1/𝑢𝑢}. We omit parameter

𝑔 as it is empty. We have:

A1

𝜖

(
(𝐴 | 𝐵)𝜎 ′) = 𝑐1?().𝑐2!⟨⟩.𝑐13!⟨⟩ | A2

𝜖

(
𝐴𝜎 ′) | A13

𝜖

(
𝐵𝜎 ′)

We use the following abbreviations for subprocesses of 𝐴 and 𝐵:

𝐴′ = 𝑤1?(𝑡) .𝐴′′
, 𝐴′′ = 𝑤1!⟨odd(𝑡)⟩.0, and 𝐵′ = 𝑥1!⟨5⟩.𝑥1?(𝑏).0.

The breakdown of 𝐴 is in Fig. 10; the breakdown of 𝐵 follows:

A13

𝜖

(
𝐵
)
= 𝑐13?().𝑢1?(𝑦4).𝑐14!⟨𝑦4⟩ | (𝜈 𝑠1)

(
𝑐14?(𝑦) .𝑐15!⟨𝑦⟩.𝑐16!⟨⟩ |

𝑐15?(𝑦4) .(𝜈 𝑠 ′′)
(
𝑦4!⟨𝑠 ′′⟩.𝑠 ′′!⟨𝑠1⟩.0) | 𝑐16?().(𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.(

𝑐21!⟨⟩ | 𝑐21?().0 | 𝑎3?(𝑦5) .𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) )

The breakdown of 𝐵′
is similar and given in App. A.1. Type 𝑆 is

broken down into MSTs𝑀1 and𝑀2, as follows:

𝑀1 =?

(
⟨?(?(⟨?(Int); end⟩); end); end⟩

)
; end

𝑀2 =!

〈
⟨?(?(⟨?(Bool); end⟩); end); end⟩

〉
; end

Names 𝑤1 and 𝑤2 are typed with 𝑀1 and 𝑀2, respectively. Then,

name 𝑢1 is typed with𝑀 , given by:

𝑀 =!

〈
⟨?(?(⟨?(𝑀1, 𝑀2); end⟩); end); end⟩

〉
; end

Consider the reductions of F (𝑃) that mimic the exchange of 𝑤

along 𝑢 in 𝑃 . We first have three synchronizations on 𝑐1, 𝑐2, 𝑐13:

F (𝑃) −→3 (𝜈 𝑐̃)
(
(𝜈 𝑎1)

(
𝑢1!⟨𝑎1⟩.

(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑎1?(𝑦1) .𝑦1?(𝑧1) .𝑐3!⟨𝑧1⟩ | 𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ |

𝑐4?(𝑥).(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

) ) )
| 𝑢1?(𝑦4). 𝑐14!⟨𝑦4⟩ |

(𝜈 𝑠1)
(
𝑐14?(𝑦) .𝑐15!⟨𝑦⟩.𝑐16!⟨⟩ |

𝑐15?(𝑦4) .(𝜈 𝑠 ′′)
(
𝑦4!⟨𝑠 ′′⟩.𝑠 ′′!⟨𝑠1⟩.0

)
|

𝑐16?().(𝜈 𝑎3)
(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ |

𝑐21?().0 | 𝑎3?(𝑦5) .𝑦5?(𝑥1, 𝑥2).
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) )

where 𝑐̃ = (𝑐3, . . . , 𝑐12, 𝑐14, . . . , 𝑐25). Then, a synchronization on 𝑢1

sends name 𝑎1 (highlighted above). Name 𝑎1 is further propagated

along 𝑐14 and 𝑐15. Another synchronization occurs on 𝑐16.

F (𝑃) −→7 (𝜈 𝑐̃∗) (𝜈 𝑎1)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | 𝑎1?(𝑦1). 𝑦1?(𝑧1).𝑐3!⟨𝑧1⟩ |

𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ | 𝑐4?(𝑥) .(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

)
|

(𝜈 𝑠1)
(
(𝜈 𝑠 ′′)

(
𝑎1!⟨𝑠 ′′⟩. 𝑠 ′′!⟨𝑠1⟩.0

)
| (𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ |

𝑐21?().0 | 𝑎3?(𝑦5).𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) ) )

where 𝑐̃∗ = (𝑐3, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

The next reduction communicates session name 𝑠 ′′ along 𝑎1:

F (𝑃) −→8 (𝜈 𝑐̃∗) (𝜈 𝑠 ′′)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑠 ′′?(𝑧1) . 𝑐3!⟨𝑧1⟩ | 𝑐3?(𝑧1).𝑧1?(𝑥) .𝑐4!⟨𝑥⟩ |
𝑐4?(𝑥).(𝜈 𝑠)

(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

)
|

(𝜈 𝑠1)
(
𝑠 ′′!⟨𝑠1⟩. 0 | (𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ | 𝑐21?().0 |

𝑎3?(𝑦5).𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) ) )

After the synchronization on channel 𝑠 ′′, name 𝑧1 is further sent

to the next parallel process through the propagator 𝑐3:

F (𝑃) −→10 (𝜈 𝑐̃∗∗) (𝜈 𝑠1)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑠1?(𝑥). 𝑐4!⟨𝑥⟩ | 𝑐4?(𝑥) .(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

)
|

(𝜈 𝑎3)
(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ | 𝑐21?().0 |

𝑎3?(𝑦5) .𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) )

where 𝑐̃∗∗ = (𝑐4, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

Communication on 𝑠1 leads to variable 𝑥 being substituted by name

𝑎3, which is then passed on 𝑐4 to the next process. In addition,

7



Alen Arslanagić, Anda-Amelia Palamariuc, and Jorge A. Pérez

inaction is simulated by a synchronization on 𝑐21.

F (𝑃) −→13

(𝜈 𝑐̃•) (𝜈 𝑎3) ( 𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | (𝜈 𝑠) ( 𝑎3!⟨𝑠⟩. 𝑠!⟨𝑤1,𝑤2⟩) |

𝑎3?(𝑦5) . 𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) )

where 𝑐̃• = (𝑐5, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

Now, the passing of the decomposition of𝑤 is finally simulated by

two reductions: first, a synchronization on 𝑎3 sends the endpoint

of session 𝑠 , which replaces variable 𝑦5; then, the dual endpoint is

used to send𝑤1,𝑤2, substituting variables 𝑥1, 𝑥2 in A17

𝜖

(
𝐵′)

.

F (𝑃) −→14 (𝜈 𝑐̃••) (𝜈 𝑠) ( 𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑠!⟨𝑤1,𝑤2⟩ | 𝑠?(𝑥1, 𝑥2).
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) )

F (𝑃) −→15 (𝜈 𝑐̃••)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) {𝑤1𝑤2/𝑥1𝑥2}

)
= 𝑄

Above, 𝑐̃•• = (𝑐5, . . . , 𝑐12, 𝑐17, . . . , 𝑐25). This is how F (𝑃) simulates

the first action of 𝑃 . Notice that in𝑄 names𝑤1,𝑤2 substitute 𝑥1, 𝑥2

and the first synchronization on𝑤 can be simulated on name𝑤1.

Example 3.8 (A Recursive Process). Let 𝑃 = 𝜇𝑋 .𝑃 ′ be a process
implementing a channel 𝑟 with the tail-recursive session type 𝑆 =

𝜇t.?(Int); !⟨Int⟩; t, with 𝑃 ′ = 𝑟?(𝑤).𝑟 !⟨−𝑤⟩.𝑋 . We decompose 𝑟

using 𝑆 and obtain two channels typed with MSTs as in Fig. 9:

𝑟1 : 𝜇t.?
(
⟨?(?(⟨?(Int); end⟩); end); end⟩

)
; t

𝑟2 : 𝜇t.!
〈
⟨?(?(⟨?(Int); end⟩); end); end⟩

〉
; t

Then, process F (𝑃) is

(𝜈 𝑐̃) (𝜈 𝑐𝑟 )
(
𝑐𝑟 ?(𝑏).(𝜈 𝑠)

(
𝑏!⟨𝑠⟩.𝑠!⟨𝑟1, 𝑟2⟩

)
| 𝑐1!⟨⟩ | A1

𝜖

(
𝑃{𝑟1/𝑟 }

)
∅
)

where 𝑐̃ = (𝑐1, . . . , 𝑐 ⌊𝑃 ⌉ ) and A1

𝜖

(
𝑃{𝑟1/𝑟 }

)
∅ is in Fig. 11.

In Fig. 11,A1

𝜖

(
𝑃{𝑟1/𝑟 }

)
simulates recursion in 𝑃 using replication.

Given some index 𝑘 , process 𝑅𝑘 mimics actions of the recursive

body. It first gets a decomposition of 𝑟 by interacting with the

process providing recursive names on 𝑐𝑟 (for the first instance,

this is a top-level process in F (𝑃)). Then, it mimics the first input

action on the channel received for 𝑧1 (that is, 𝑟1): the input of actual

names for𝑤1 is delegated through channel redirections to name 𝑦2

(both prefixes are highlighted in Fig. 11). Once the recursive name

is used, the decomposition of recursive name is made available

for the breakdown of the continuation by a communication on 𝑐𝑟 .

Similarly, in the continuation, the second action on 𝑟 , output, is

mimicked by 𝑟2 (received for 𝑧2), with the output of actual name

𝑤1 delegated to 𝑠 ′ (both prefixes are highlighted in Fig. 11).

Subprocess𝑅5
is a breakdown of the first instance of the recursive

body. The replication guarded by 𝑎1 produces a next instance, i.e.,

process 𝑅2{𝑥𝑟1
, 𝑥𝑟2/𝑟1, 𝑟2} in 𝑃 . By communication on 𝑎1 and a few

reductions on propagators, it gets activated: along 𝑎1 it first receives

a name for 𝑦′
1
along which it also receives: (i) recursive names

𝑟1, 𝑟2 for variables 𝑥𝑟1
, 𝑥𝑟2

, and (ii) a name for 𝑦1 along which it will

receive 𝑎1 again, for future instances, as it can be seen inA𝑘+7

𝑧𝑥

(
𝑋
)
𝑔 .

A1

𝜖

(
𝑃{𝑟1/𝑟 }

)
∅ = (𝜈 𝑠1)

(
𝑐1?().𝑐2!⟨⟩.𝑐4!⟨⟩ |
𝑐2?().(𝜈 𝑎1)

(
𝑠1!⟨𝑎1⟩.

(
𝑐3!⟨⟩ | 𝑐3?().0 |

𝑐4?().𝑠1?(𝑧𝑥 ).𝑐5!⟨𝑧𝑥 ⟩ |
𝑅5 | ∗ 𝑎1?(𝑦′

1
) .𝑦′

1
?(𝑥𝑟1

, 𝑥𝑟2
, 𝑦1) .𝑃

) ) )
where:

𝑃 = (𝜈 𝑐̃)
(
𝑐𝑟 ?(𝑏).(𝜈 𝑠 ′)

(
𝑏!⟨𝑠 ′⟩.𝑠 ′!⟨𝑥𝑟1

, 𝑥𝑟2
⟩
)
| 𝑐1!⟨⟩ |

𝑐1?().𝑦1?(𝑧𝑥 ) .𝑐2!⟨𝑧𝑥 ⟩ | 𝑅2{𝑥𝑟1
, 𝑥𝑟2/𝑟1, 𝑟2}

)
𝑅𝑘 = 𝑐𝑘?(𝑧𝑥 ).

(𝜈 𝑎1)
(
𝑐𝑟 !⟨𝑎1⟩.((𝜈 𝑠1)

(
𝑐𝑘+1

?(𝑦).𝑐𝑘+2
!⟨𝑦⟩.𝑐𝑘+3

!⟨⟩ |
𝑐𝑘+2

?(𝑦) .(𝜈 𝑠)
(
𝑦!⟨𝑠⟩.𝑠!⟨𝑠1⟩) |

𝑐𝑘+3
?().(𝜈 𝑎2)

(
𝑠1!⟨𝑎2⟩.

(
𝑐𝑘+𝑙+4

!⟨⟩ |

𝑐𝑘+𝑙+4
?().0 | 𝑎2?(𝑦2). 𝑦2?(𝑤1).

(𝜈 𝑐̃)
(
𝑐𝑘+4

!⟨𝑧𝑥 ⟩ | A𝑘+4

𝑧𝑥

(
𝑟2!⟨−𝑤1⟩.𝑋

)
𝑔

) ) )
|

𝑎1?(𝑦1).𝑦1?(𝑧1, 𝑧2). 𝑧1?(𝑦).

𝑐𝑘+1
!⟨𝑦⟩.𝑐𝑟 ?(𝑏).(𝜈 𝑠 ′)

(
𝑏!⟨𝑠 ′⟩.𝑠 ′!⟨𝑧1, 𝑧2⟩

) ) ) )
A𝑘+4

𝑧𝑥

(
𝑟2!⟨−𝑤1⟩.𝑋

)
𝑔 = 𝑐𝑘?(𝑧𝑥 ) .(𝜈 𝑎1)𝑐𝑟 !⟨𝑎1⟩.

(A𝑘+7

𝑧𝑥

(
𝑋
)
𝑔 | 𝑎1?(𝑦1) .𝑦1?(𝑧̃) .𝑊

)
𝑊 = (𝜈 𝑎2)

(
𝑧2!⟨𝑎2⟩. (𝑐𝑘+7

!⟨𝑧𝑥 ⟩.𝑐𝑟 ?(𝑏) .(𝜈 𝑠) (𝑏!⟨𝑠⟩.𝑠!⟨̃𝑧⟩
)
|

𝑎2?(𝑦2) .𝑦2?(𝑧′
1
) .(𝜈 𝑐̃) (𝑐𝑘+5

!⟨⟩ |
𝑐𝑘+5

?().𝑧′
1
?(𝑥) .𝑐𝑘+6

!⟨𝑥⟩ |

𝑐𝑘+6
?(𝑥) .(𝜈 𝑠 ′) (𝑥 !⟨𝑠 ′⟩. 𝑠 ′!⟨−𝑤1⟩

) ) ) )
A𝑘+7

𝑧𝑥

(
𝑋
)
𝑔 = (𝜈 𝑠1)

(
𝑐𝑘+7

?(𝑧𝑥 ) .𝑐𝑘+8
!⟨𝑧𝑥 ⟩.𝑐𝑘+9

!⟨𝑧𝑥 ⟩ |
𝑐𝑘+8

?(𝑧𝑥 ).(𝜈 𝑎1)
(
𝑐𝑟 !⟨𝑎1⟩.

(
𝑐𝑘+9

?(𝑧𝑥 ).𝑠1!⟨𝑧𝑥 ⟩. |
𝑐𝑘+10

!⟨⟩𝑐𝑘+10
?().0 |

𝑎1?(𝑦1) .𝑦1?(𝑟1, 𝑟2) .
(𝜈 𝑠 ′) (𝑧𝑥 !⟨𝑠 ′⟩.𝑠 ′!⟨𝑟1, 𝑟2, 𝑠1⟩

) ) ) ) ) )
with 𝑔 = {𝑋 ↦→ 𝑟1, 𝑟2}

Figure 11: Breakdown of recursive process (Exam. 3.8)

3.4 Results
We establish the minimality result for 𝜋 using the typability of F ( ·).
We need some auxiliary definitions to characterize the propagators

required to decompose recursive processes.

Theorems 3.10 and 3.27 in [1] state typability results by introduc-

ing two typing environments, denotedΘ and Φ. While environment

Θ is used to type linear propagators (e.g., 𝑐𝑘 , 𝑐𝑘+1
, . . .) generated

by the breakdown function B−
−
(
·
)
, environment Φ types shared

propagators used in trios that propagate breakdown of recursive

names (e.g., 𝑐𝑟 , 𝑐𝑣, . . . where 𝑟 and 𝑣 are recursive names).

Definition 3.9 (Session environment for propagators). Let Θ be the

session environment and Φ be the recursive propagator environ-

ment defined in Theorem 3.10 and Theorem 3.27 [1], respectively.

8
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Then, by applying the encoding (⟨ · ⟩)2
, we define Θ′

and Φ′
as

follows: Θ′ = (⟨Θ⟩)2,Φ′ = (⟨Φ⟩)2
.

We can use Θ′ = (⟨Θ⟩)2
in the following statement, where we

state the typability result for the breakdown function.

Theorem 1 (Typability of Breakdown). Let P be an initialized
𝜋 process. If Γ;Δ,Δ𝜇 ⊢ 𝑃 ⊲⋄, thenH(Γ′),Φ′

;H(Δ),Θ′ ⊢ A𝑘
𝜖

(
𝑃
)
𝑔 ⊲⋄,

where 𝑘 > 0; 𝑟̃ = dom(Δ𝜇 );Φ′ =
∏

𝑟 ∈𝑟 𝑐
𝑟

: ⟨⟨?(R ′★(Δ𝜇 (𝑟 ))); end⟩⟩;
and balanced(Θ′) with

dom(Θ′) = {𝑐𝑘 , 𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ⌉−1

} ∪ {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ⌉−1

}
such that Θ′(𝑐𝑘 ) =?(·); end.

Proof. Directly by using Theorem 5.1 [10], Theorem 3.27 [1],

and Theorem 5.2 [10]. See App. C.2 for details. □

We now consider typability for the decomposition function,

using Φ′ = (⟨Φ⟩)2
as in Def. 3.9. The proof follows from Thm. 1;

see App. C.2.

Theorem 2 (Minimality Result for 𝜋 ). Let 𝑃 be a closed 𝜋

process, with 𝑢 = fn(𝑃) and 𝑣̃ = rn(𝑃). If Γ;Δ,Δ𝜇 ⊢ 𝑃 ⊲ ⋄, where Δ𝜇

only involves recursive session types, then
H(Γ𝜎);H(Δ𝜎),H(Δ𝜇𝜎) ⊢ F (𝑃) ⊲ ⋄, where 𝜎 = {init(𝑢)/𝑢}.

4 OPTIMIZATIONS
Although conceptually simple, the composition approach to de-

composition induces redundancies. Here we propose F ∗ ( · ), an
optimization of the decomposition F ( · ), and establish its static and
dynamic correctness, in terms of the minimality result (cf. Thm. 4)

but also operational correspondence (cf. Thm. 5), respectively.

4.1 Motivation
To motivate our insights, consider the process A𝑘

𝑥̃

(
𝑢𝑖?(𝑤) .𝑄

)
𝑔 as

presented in § 3.1 and Tab. 2. We identify some suboptimal fea-

tures of this decomposition: (i) channel redirections; (ii) redundant

synchronizations on propagators; (iii) the structure of trios is lost.

While an original process 𝑃 receives a name for variable𝑤 along

𝑢𝑖 , its breakdown does not input a breakdown of 𝑤 directly, but

through a series of channel redirections: 𝑢𝑖 receives a name along

which it sends restricted name 𝑠 , along which it sends the restricted

name 𝑠1 and so on. Finally, the name received for 𝑦′ receives 𝑤 ,

the breakdown of𝑤 . This redundancy is perhaps more evident in

Def. 3.5, which gives the translation of types by composition: the

mimicked input action is five-level nested for the original name.

This is due to the composition of J · K1

𝑔 and J · K2
.

Also, A𝑘
𝑥̃

(
𝑢𝑖?(𝑤).𝑄

)
𝑔 features redundant communications on

propagators. For example, the bound name 𝑦 is locally propagated

by 𝑐𝑘+1
and 𝑐𝑘+2

. This is the result of breaking down sequential

prefixes induced by J · K1

𝑔 (not present in the original process). Last

but not least, the trio structure is lost as subprocess 𝑄𝑥̃ is guarded

and nested, and it inductively invokes the function on continuation

𝑄 . This results in an arbitrary level of process nesting, which is

induced by the final application of encoding J·K2
in the composition.

The non-optimality of A𝑘
𝑥̃

(
·
)
𝑔 is more prominent in the treat-

ment of recursive processes and recursive names. As HO does not

feature recursion constructs, J · K1

𝑔 encodes recursive behaviors

by relying on abstraction passing and shared abstractions. Then,

going back to 𝜋 via J · K2

𝑔 , this is translated to a process involving a

replicated subprocess. But going through this path, the encoding

of recursive process becomes convoluted. On top of that, all non-

optimal features of the core fragment (as discussed for the case of

input) are also present in the decomposition of recursion.

Here we develop an optimized decomposition function, denoted

F ∗ ( · ) (Def. 4.8), that avoids the redundancies described above. The
optimized decomposition produces a composition of trios processes,
with a fixed maximum number of nested prefixes. The decomposed

process does not redirect channels and only introduces propagators

that codify the sequentiality of the original process.

4.2 Preliminaries
We decompose a session type into a list of minimal session types:

Definition 4.1 (Decomposing Types). Let 𝑆 and𝐶 be a session and

a channel type, resp. (cf. Fig. 4). The type decomposition function
H∗ ( · ) is defined in Figure 12.

Example 4.2 (Decomposing a Recursive Type). Let 𝑆 = 𝜇t.𝑆 ′ be
a recursive session type, with 𝑆 ′ =?(Int); ?(Bool); !⟨Bool⟩; t. By
Fig. 12, since 𝑆 is tail-recursive,H∗ (𝑆) = R(𝑆 ′). Further,

R(𝑆 ′) = 𝜇t.?(H∗ (Int)); t,R(?(Bool); !⟨Bool⟩; t)

By definition of R( · ), we obtain

H∗ (𝑆) = 𝜇t.?(Int); t, 𝜇t.?(Bool); t, 𝜇t.!⟨Bool⟩; t,R(𝑡)

(using H∗ (Int) = Int and H∗ (Bool) = Bool). Since R(t) = 𝜖 , we

have

H∗ (𝑆) = 𝜇t.?(Int); t, 𝜇t.?(Bool); t, 𝜇t.!⟨Bool⟩; t

Example 4.3 (Decomposing an Unfolded Recursive Type). Let 𝑇 =

?(Bool); !⟨Bool⟩; 𝑆 be a derived unfolding of 𝑆 from Exam. 4.2. Then,

by Fig. 12, R★(𝑇 ) is the list of minimal recursive types obtained

as follows: first, R★(𝑇 ) = R★(!⟨Bool⟩; 𝜇t.𝑆 ′) and after one more

step, R★(!⟨Bool⟩; 𝜇t.𝑆 ′) = R★(𝜇t.𝑆 ′). Finally, we have R★(𝜇t.𝑆 ′) =
R(𝑆 ′). We get the same list of minimal types as in Exam. 4.2:

R★(𝑇 ) = 𝜇t.?(Int); t, 𝜇t.?(Bool); t, 𝜇t.!⟨Bool⟩; t

Definition 4.4 (Decomposing Environments). Given environments

Γ and Δ, we define H∗ (Γ) and H∗ (Δ) inductively as H∗ (∅) = ∅
and

H∗ (Δ, 𝑢𝑖 : 𝑆) = H∗ (Δ), (𝑢𝑖 , . . . , 𝑢𝑖+|H∗ (𝑆) |−1
) : H∗ (𝑆)

H∗ (Γ, 𝑢𝑖 : ⟨𝑆⟩) = H∗ (Γ), 𝑢𝑖 : H∗ (⟨𝑆⟩)

Definition 4.5 (Degree of a Process). The optimized degree of a
process 𝑃 , denoted ⌊𝑃⌉∗, is inductively defined as follows:

⌊𝑄⌉∗ + 1 if 𝑃 = 𝑢𝑖 !⟨𝑦⟩.𝑄 or 𝑃 = 𝑢𝑖?(𝑦).𝑄
⌊𝑄⌉∗ if 𝑃 = (𝜈 𝑠 : 𝑆)𝑄
⌊𝑄⌉∗ + 1 if 𝑃 = (𝜈 𝑟 : 𝑆)𝑄 and tr(𝑆)
⌊𝑄⌉∗ + ⌊𝑅⌉∗ + 1 if 𝑃 = 𝑄 | 𝑅
1 if 𝑃 = 0 or 𝑃 = 𝑋

⌊𝑄⌉∗ + 1 if 𝑃 = 𝜇𝑋 .𝑄
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H∗ (end) = end

H∗ (⟨𝑆⟩) = ⟨H∗ (𝑆)⟩
H∗ (𝑆1, . . . , 𝑆𝑛) = H∗ (𝑆1), . . . ,H∗ (𝑆𝑛)

H∗ (!⟨𝐶⟩; 𝑆) =
{

!⟨H∗ (𝐶)⟩; end if 𝑆 = end

!⟨H∗ (𝐶)⟩; end ,H∗ (𝑆) otherwise

H∗ (?(𝐶); 𝑆) =
{

?(H∗ (𝐶)); end if 𝑆 = end

?(H∗ (𝐶)); end ,H∗ (𝑆) otherwise

H∗ (𝜇t.𝑆 ′) = R(𝑆 ′)
H∗ (𝑆) = R★(𝑆) where 𝑆 ≠ 𝜇t.𝑆 ′

R(t) = 𝜖

R(!⟨𝐶⟩; 𝑆) = 𝜇t.!⟨H∗ (𝐶)⟩; t,R(𝑆)
R(?(𝐶); 𝑆) = 𝜇t.?(H∗ (𝐶)); t,R(𝑆)

R★(?(𝐶); 𝑆) = R★(!⟨𝐶⟩; 𝑆) = R★(𝑆)
R★(𝜇t.𝑆) = R(𝑆)

Figure 12: Decomposition of typesH∗ ( · ) (cf. Def. 4.1)

As before, given a finite tuple of names 𝑢 = (𝑎, 𝑏, 𝑠, 𝑠 ′, . . .), we
write init(𝑢) to denote the tuple (𝑎1, 𝑏1, 𝑠1, 𝑠

′
1
, . . .); also, we say that

a process is initialized if all of its names have some index.

Given a tuple of initialized names𝑢 and a tuple of indexed names

𝑥 , it is useful to collect those names in 𝑥 that appear in 𝑢.

Definition 4.6 (Free indexed names). Let 𝑢 and 𝑥 be two tuples of

names. We define the set fnb(𝑢, 𝑥) as {𝑧𝑘 : 𝑧𝑖 ∈ 𝑢 ∧ 𝑧𝑘 ∈ 𝑥}.

As usual, we treat sets of names as tuples (and vice-versa). By

abusing notation, given a process 𝑃 , we shall write fnb(𝑃,𝑦) to
stand for fnb(fn(𝑃), 𝑦). Then, we have that fnb(𝑃, 𝑥) ⊆ 𝑥 . In the

definition of the breakdown function, this notion allows us to con-

veniently determine a context for a subsequent trio.

Remark 1. Whenever 𝑐𝑘?(𝑦) (resp. 𝑐𝑘 !⟨𝑦⟩) with 𝑦 = 𝜖 , we shall
write 𝑐𝑘?() (resp. 𝑐𝑘 !⟨⟩) to stand for 𝑐𝑘?(𝑦) (resp. 𝑐𝑘 !⟨𝑦⟩) such that
𝑐𝑘 :?(⟨end⟩); end (resp. 𝑐𝑘 :!⟨⟨end⟩⟩; end).

Definition 4.7 (Index function). Let 𝑆 be an (unfolded) recursive

session type. The function 𝑓 (𝑆) is defined as follows:

𝑓 (𝑆) =
{
𝑓 ′
0
(𝑆 ′{𝑆/t}) if 𝑆 = 𝜇t.𝑆 ′

𝑓 ′
0
(𝑆) otherwise

where: 𝑓 ′
𝑙
(!⟨𝑈 ⟩; 𝑆) = 𝑓 ′

𝑙+1
(𝑆), 𝑓 ′

𝑙
(?(𝑈 ); 𝑆) = 𝑓 ′

𝑙+1
(𝑆), and

𝑓 ′
𝑙
(𝜇t.𝑆) = |R(𝑆) | − 𝑙 + 1.

Given a process 𝑃 , we write frv(𝑃) to denote that 𝑃 has a free

recursive variable.

4.3 The Optimized Decomposition
We define the optimized decomposition F ∗ ( · ) by relying on the

revised breakdown function A𝑘
𝑥̃

(
·
)
(cf. § 4.3.1). Given a context 𝑥

and a 𝑘 > 0, A𝑘
𝑥̃

(
·
)
is defined on initialized processes. Table 3 gives

the definition: we use an auxiliary function for recursive processes,

denoted A𝑘
rec 𝑥̃

(
·
)
𝑔 (cf. § 4.3.2), where parameter 𝑔 is a mapping

from recursive variables to a list of name variables.

In the following, to keep presentation simple, we assume pro-

cesses 𝜇𝑋 .𝑃 in which 𝑃 does not contain a subprocess of shape

𝜇𝑌 .𝑃 ′. The generalization of our decomposition without this as-

sumption is not difficult, but is notationally heavy.

4.3.1 The Breakdown Function. We describe entries 1-7 in Table 3.

1. Input Process A𝑘
𝑥̃

(
𝑢𝑖?(𝑦).𝑄

)
consists of a leading trio that mim-

ics the input and runs in parallel with the breakdown of 𝑄 . In the

trio, a context 𝑥 is expected along 𝑐𝑘 . Then, an input on 𝑢𝑙 mimics

the input action: it expects the decomposition of name 𝑦, denoted 𝑦.

To decompose 𝑦 we use its type: if 𝑦 : 𝑆 then 𝑦 = (𝑦1, . . . , 𝑦 |H∗ (𝑆) |).
The index of 𝑢𝑙 depends on the type of 𝑢𝑖 . Intuitively, if 𝑢𝑖 is tail-

recursive then 𝑙 = 𝑓 (𝑆) (Def. 4.7) as index and we do not increment

it, as the same decomposition of 𝑢𝑖 should be used to mimic a new

instance in the continuation. Otherwise, if 𝑢𝑖 is linear then we use

the substitution 𝜎 = {𝑢𝑖+1/𝑢𝑖 } to increment it in𝑄 . Next, the context

𝑧̃ = fnb(𝑄, 𝑥𝑦 \𝑤) is propagated, where𝑤 = (𝑢𝑖 ) or𝑤 = 𝜖 .

2. Output Process A𝑘
𝑥̃

(
𝑢𝑖 !⟨𝑦 𝑗 ⟩.𝑄

)
sends the decomposition of 𝑦 on

𝑢𝑙 , with 𝑙 as in the input case. We decompose name 𝑦 𝑗 based on its

type 𝑆 : 𝑦 = (𝑦 𝑗 , . . . , 𝑦 𝑗+|H∗ (𝑆) |−1
). The context to be propagated is

𝑧̃ = fnb(𝑃, 𝑥 \𝑤), where𝑤 and 𝜎 are as in the input case.

3. Restriction (Non-recursive name) The breakdown of process

(𝜈 𝑠 : 𝐶)𝑄 is (𝜈 𝑠̃ : H∗ (𝐶)) B𝑘
𝑥̃

(
𝑄𝜎

)
, where 𝑠 is decomposed using

𝐶: 𝑠̃ = (𝑠1, . . . , 𝑠 |H∗ (𝐶) |). Since (𝜈 𝑠) binds 𝑠 and its dual 𝑠 (or only

𝑠 if 𝐶 is a shared type) the substitution 𝜎 is simply {𝑠1𝑠1/𝑠𝑠} and
initializes indexes in 𝑄 .

4. Restriction (Recursive name) As in the previous case, in the

breakdown of (𝜈 𝑠 : 𝜇t.𝑆)𝑄 the name 𝑠 is decomposed into 𝑠̃ by

relying on 𝜇t.𝑆 . Here the breakdown consists of the breakdown of

𝑄 running in parallel with a control trio, which appends restricted

(recursive) names 𝑠̃ and 𝑠̃ to the context, i.e., 𝑧̃ = 𝑥, 𝑠̃, 𝑠̃ .

5. Composition The breakdown of process 𝑄1 | 𝑄2 uses a control

trio to trigger the breakdowns of 𝑄1 and 𝑄2, similarly as before.

6. Inaction The breakdown of 0 is simply an input prefix that

receives an empty context (i.e., 𝑥 = 𝜖).

7. Recursion The breakdown of 𝜇𝑋 .𝑃 is as follows:

(𝜈 𝑐𝑟𝑋 ) (𝑐𝑘?(𝑥) .𝑐𝑟
𝑘+1

!⟨̃𝑧⟩.𝜇𝑋 .𝑐𝑟𝑋 ?(𝑦).𝑐𝑟
𝑘+1

!⟨𝑦⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑃
)
𝑔)

We have a control trio and the breakdown of 𝑃 , obtained using

A𝑘
rec 𝑥̃

(
·
)
𝑔 (§ 4.3.2). The trio receives the context 𝑥 on 𝑐𝑘 and

propagates it further. To ensure typability, we bind all session free

names of 𝑃 using the context 𝑧̃, which contains the decomposition

of those free names. This context is needed to break down 𝑃 , and so

we record it as 𝑔 = {𝑋 ↦→ 𝑧̃} in the definition of A𝑘+1

rec 𝑥̃

(
𝑃
)
𝑔 . This

way, 𝑧̃ will be propagated all the way until reaching 𝑋 .

Next, the recursive trio is enabled, and receives 𝑦 along 𝑐𝑟
𝑋
, with

|𝑧̃ | = |𝑦 | and 𝑙 = |𝑃 |. The tuple 𝑦 is propagated to the first trio

of A𝑘+1

rec 𝑥̃

(
𝑃
)
𝑔 . By definition of A𝑘+1

rec 𝑥̃

(
𝑃
)
𝑔 , its propagator 𝑐

𝑟
𝑋
will

send the same context as received by the first trio. Hence, the

recursive part of the control trio keeps sending this context to the

next instances of recursive trios of A𝑘+1

rec 𝑥̃

(
𝑃
)
𝑔 .
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𝑃 A𝑘
𝑥̃

(
𝑃
)

1 𝑢𝑖?(𝑦).𝑄 𝑐𝑘?(𝑥) .𝑢𝑙 ?(𝑦).𝑐𝑘+1
!⟨̃𝑧⟩ | A𝑘+1

𝑧

(
𝑄𝜎

) 𝑦 𝑗 : 𝑆 ∧ 𝑦 = (𝑦1, . . . , 𝑦 |𝑆 |)
𝑤 = (lin(𝑢𝑖 )) ? {𝑢𝑖 }: 𝜖
𝑧̃ = fnb(𝑄, 𝑥𝑦 \𝑤)
𝑙 = (tr(𝑢𝑖 )) ? 𝑓 (𝑆): 𝑖
𝜎 = next(𝑢𝑖 ) · {𝑦1/𝑦}

2 𝑢𝑖 !⟨𝑦 𝑗 ⟩.𝑄 𝑐𝑘?(𝑥) .𝑢𝑙 !
〈
𝑦
〉
.𝑐𝑘+1

!⟨̃𝑧⟩ | A𝑘+1

𝑧

(
𝑄𝜎

) 𝑦 𝑗 : 𝑆 ∧ 𝑦 = (𝑦 𝑗 , . . . , 𝑦 𝑗+|H∗ (𝑆) |−1
)

𝑤 = (lin(𝑢𝑖 )) ? {𝑢𝑖 }: 𝜖
𝑧̃ = fnb(𝑄, 𝑥 \𝑤)
𝑙 = (tr(𝑢𝑖 )) ? 𝑓 (𝑆): 𝑖
𝜎 = next(𝑢𝑖 )

3 (𝜈 𝑠 : 𝐶)𝑄 (𝜈 𝑠̃ : H∗ (𝐶))A𝑘
𝑥̃

(
𝑄𝜎

) 𝑠̃ = (𝑠1, . . . , 𝑠 |H∗ (𝐶) |)
𝜎 = {𝑠1𝑠1/𝑠𝑠}

4 (𝜈 𝑠 : 𝜇t.𝑆)𝑄 (𝜈 𝑠̃ : R(𝑆))
(
𝑐𝑘?(𝑥).𝑐𝑘+1

!⟨̃𝑧⟩.0 | A𝑘+1

𝑧

(
𝑄
) ) tr(𝜇t.𝑆) 𝑠̃ = (𝑠1, . . . , 𝑠 |R (𝑆) |)

𝑧̃ = 𝑥, 𝑠̃, 𝑠̃ 𝑠̃ = (𝑠1, . . . , 𝑠 |R (𝑆) |)

5 𝑄1 | 𝑄2
𝑐𝑘?(𝑥) .𝑐𝑘+1

!⟨𝑦⟩.𝑐𝑘+𝑙+1
!⟨̃𝑧⟩ | A𝑘+1

𝑦̃

(
𝑄1

)
| A𝑘+𝑙+1

𝑧

(
𝑄2

) 𝑦 = fnb(𝑄1, 𝑥) 𝑧̃ = fnb(𝑄2, 𝑥)
𝑙 = |𝑄1 |

6 0 𝑐𝑘?().0

7 𝜇𝑋 .𝑃 (𝜈 𝑐𝑟
𝑋
) (𝑐𝑘?(𝑥) .𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝜇𝑋 .𝑐𝑟

𝑋
?(𝑦).𝑐𝑟

𝑘+1
!⟨𝑦⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑃
)
𝑔)

𝑛 = fs(𝑃) 𝑛 : 𝐶 ∧ 𝑧̃ = bn(𝑛 : 𝐶)
|𝑧̃ | = |𝑦 | 𝑔 = {𝑋 ↦→ 𝑧̃}

𝑃 A𝑘
rec 𝑥̃

(
𝑃
)
𝑔

8 𝑢𝑖 !⟨𝑦 𝑗 ⟩.𝑄
𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥).𝑢𝑙 !⟨𝑦⟩.𝑐𝑟𝑘+1

!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔 (if 𝑔 ≠ ∅)

𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).
(
𝑢𝑙 !⟨𝑦⟩.𝑐𝑟𝑘+1

!⟨̃𝑧⟩ | 𝑋
)
| A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔 (if 𝑔 = ∅)

𝑦 : 𝑇 ∧(𝑦 𝑗 , . . . , 𝑦 𝑗+|H∗ (𝑇 ) |−1
)

𝑤 = (lin(𝑢𝑖 )) ? {𝑢𝑖 }: 𝜖
𝑧̃ = 𝑔(𝑋 ) ∪ fnb(𝑄, 𝑥 \𝑤)
𝑙 = (tr(𝑢𝑖 )) ? 𝑓 (𝑆): 𝑖
𝜎 = next(𝑢𝑖 )

9 𝑢𝑖?(𝑦).𝑄
𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥).𝑢𝑙 ?(𝑦) .𝑐𝑟𝑘+1

!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔 (if 𝑔 ≠ ∅)

𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).
(
𝑢𝑙 ?(𝑦).𝑐𝑟𝑘+1

!⟨̃𝑧⟩ | 𝑋
)
| A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔 (if 𝑔 = ∅)

𝑤 = (lin(𝑢𝑖 )) ? {𝑢𝑖 }: 𝜖
𝑧̃ = 𝑔(𝑋 ) ∪ fnb(𝑄, 𝑥𝑦 \𝑤)
𝑙 = (tr(𝑢𝑖 )) ? 𝑓 (𝑆): 𝑖
𝜎 = next(𝑢𝑖 ) · {𝑦1/𝑦}

10 𝑄1 | 𝑄2

𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).
(
𝑐𝑟
𝑘+1

!⟨𝑦1⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑦2⟩
)
| (if 𝑔 ≠ ∅)

A𝑘+1

rec 𝑦̃1

(
𝑄1

)
𝑔 | A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
∅

𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).
(
𝑐𝑟
𝑘+1

!⟨𝑦1⟩ | 𝑐𝑟𝑘+𝑙+1
!⟨𝑦2⟩ | 𝑋

)
|

A𝑘+1

rec 𝑦̃1

(
𝑄1

)
∅ | A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
∅ (if 𝑔 = ∅)

frv(𝑄1)
𝑦1 = 𝑔(𝑋 ) ∪ fnb(𝑄1, 𝑥)
𝑦2 = fnb(𝑄2, 𝑥)
𝑙 = |𝑄1 |

11 (𝜈 𝑠 : 𝐶)𝑄
𝜇𝑋 .(𝜈 𝑠̃ : H∗ (𝐶))𝑐𝑟

𝑘
?(𝑥) .𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔 (if 𝑔 ≠ ∅)

𝜇𝑋 .(𝜈 𝑠̃ : H∗ (𝐶))𝑐𝑟
𝑘

?(𝑥) .
(
𝑐𝑟
𝑘+1

!⟨̃𝑧⟩ | 𝑋
)
| A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔 (if 𝑔 = ∅)

𝑠̃ = (𝑠1, . . . , 𝑠 |H∗ (𝑆) |)
𝑠̃ = (lin(𝑆)) ? (𝑠1, . . . , 𝑠 |H∗ (𝑆) |): 𝜖
𝑧̃ = 𝑥, 𝑠̃, 𝑠̃ 𝜎 = {𝑠1𝑠1/𝑠𝑠}

12 𝑋
𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥).𝑐𝑟

𝑋
!⟨𝑥⟩𝑋 (if 𝑔 ≠ ∅)

𝜇𝑋 .𝑐𝑟
𝑘

?().
(
𝑐𝑟
𝑋

!⟨⟩ | 𝑋
)

(if 𝑔 = ∅)

13 0 𝑐𝑟
𝑘

?().0

Table 3: Optimized breakdown function A𝑘
𝑥̃

(
·
)
for processes, and auxiliary function for recursive processes A𝑘

rec 𝑥̃

(
·
)
𝑔.

Notice that the leading trio actually has four prefixes. This sim-

plifies our presentation: this trio can be broken down into two trios

by introducing an extra propagator 𝑐𝑘+1
to send over 𝑐𝑟

𝑘+2
.

4.3.2 Handling 𝑃 in 𝜇𝑋 .𝑃 . As already mentioned, we use the aux-

iliary function A𝑘
rec 𝑥̃

(
·
)
𝑔 to generate recursive trios.

We discuss entries 8-11 in Tab. 3 (other entries are similar as

before). A key observation is that parameter 𝑔 can be empty. To see

this, consider a process like 𝑃 = 𝜇𝑋 .(𝑄1 | 𝑄2) where 𝑋 occurs free

11
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in 𝑄1 but not in 𝑄2. If 𝑋 occurs free in 𝑄1 then its decomposition

will have a non-empty 𝑔, whereas the 𝑔 for𝑄2 will be empty. In the

recursive trios of Tab. 3, the difference between 𝑔 ≠ ∅ and 𝑔 = ∅ is

subtle: in the former case, 𝑋 appears guarded by a propagator; in

the latter case, it appears unguarded in a parallel composition. This

way, trios in the breakdown of 𝑄2 replicate themselves on a trigger

from the breakdown of 𝑄1.

Given this difference, we only describe the cases when 𝑔 ≠ ∅:
8 / 9. Output and Input The breakdown of 𝑢𝑖 !⟨𝑦 𝑗 ⟩.𝑄 consists of

the breakdown of 𝑄 in parallel with a leading trio, a recursive

process whose body is defined as in B
(
·
)
. As names 𝑔(𝑋 ) may not

appear free in 𝑄 , we must ensure that a context 𝑧̃ for the recursive

body is propagated. The breakdown of 𝑟?(𝑦).𝑄 is defined similarly.

10. Parallel Composition We discuss the breakdown of 𝑄1 | 𝑄2

assuming frv(𝑄1). We take 𝑦1 = 𝑔(𝑋 ) ∪ fnb(𝑄1, 𝑥) to ensure that
𝑔(𝑋 ) is propagated to the breakdown of 𝑋 . The role of 𝑐𝑟

𝑘+𝑙+1
is to

enact a new instance of the breakdown of 𝑄2; it has a shared type

to enable replication. In a running process, the number of these

triggers in parallel denotes the number of available instances of 𝑄2.

11. Recursive Variable In this case, the breakdown is a control

trio that receives the context 𝑥 from a preceding trio and propagates

it again to the first control trio of the breakdown of a recursive

process along 𝑐𝑟
𝑋
. Notice that by construction we have 𝑥 = 𝑔(𝑋 ).

We may now define the optimized process decomposition:

Definition 4.8 (Decomposing Processes, Optimized). Let 𝑃 be a

𝜋 process with 𝑢 = fn(𝑃) and 𝑣̃ = rn(𝑃). Given the breakdown

functionA𝑘
𝑥̃

(
·
)
in Table 3, the optimized decomposition of 𝑃 , denoted

F ∗ (𝑃), is defined as

F ∗ (𝑃) = (𝜈 𝑐̃)
(
𝑐𝑘 !⟨̃𝑟 ⟩.0 | A𝑘

𝑟

(
𝑃𝜎

) )
where: 𝑘 > 0; 𝑐̃ = (𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1

); 𝑟̃ such that for 𝑣 ∈ 𝑣̃ and 𝑣 : 𝑆

(𝑣1, . . . , 𝑣 |R (𝑆) |) ⊆ 𝑟̃ ; and 𝜎 = {init(𝑢)/𝑢}.

4.4 Examples
We now illustrate F ∗ ( · ), A𝑘

𝑥̃

(
·
)
, A𝑘

rec 𝑥̃

(
·
)
𝑔 , andH∗ ( · ).

Example 4.9 (Exam. 3.7, Revisited). Consider again the process

𝑃 = (𝜈 𝑢) (𝐴 | 𝐵) as in Exam. 3.7. Recall that 𝑃 implements session

types 𝑆 =!⟨𝑇 ⟩; end and 𝑇 =?(Int); !⟨Bool⟩; end.
By Def. 4.5, ⌊𝑃⌉∗ = 9. The optimized decomposition of 𝑃 is:

F ∗ (𝑃) = (𝜈 𝑐̃)
(
𝑐1!⟨⟩ | (𝜈 𝑢1)A1

𝜖

(
(𝐴 | 𝐵)𝜎 ′) )

where 𝜎 ′ = init(fn(𝑃)) · {𝑢1𝑢1/𝑢𝑢} and 𝑐̃ = (𝑐1, . . . , 𝑐9). We have:

A1

𝜖

(
(𝐴 | 𝐵)𝜎 ′) ) = 𝑐1?().𝑐2!⟨⟩.𝑐6!⟨⟩ | A2

𝜖

(
𝐴𝜎 ′) | A6

𝜖

(
𝐵𝜎 ′)

The breakdowns of sub-processes 𝐴 and 𝐵 are as follows:

A2

𝜖

(
𝐴𝜎 ′) = 𝑐2?().𝑢1!⟨𝑤1,𝑤2⟩.𝑐3!⟨⟩ | 𝑐3?().𝑤1?(𝑡) .𝑐4!⟨⟩ |

𝑐4?().𝑤2!⟨odd(𝑡)⟩.𝑐5!⟨⟩ | 𝑐5?().0
A6

𝜖

(
𝐵𝜎 ′) = 𝑐6?().𝑢1?(𝑥1, 𝑥2) .𝑐7!⟨𝑥1, 𝑥2⟩ |𝑐7?(𝑥1, 𝑥2).𝑥1!⟨5⟩.𝑐8!⟨𝑥2⟩ |

𝑐8?(𝑥2) .𝑥2?(𝑏1) .𝑐9!⟨⟩ | 𝑐9?().0

Name𝑤 is decomposed as indexed names𝑤1,𝑤2; by using H∗ ( · )
(Def. 4.1) on𝑇 , theirMSTs are𝑀1 =!⟨Int⟩; end and𝑀2 =?(Bool); end,
respectively. Name𝑢1 is the decomposition of name𝑢 and it is typed

with !⟨𝑀1, 𝑀2⟩; end. After a few administrative reductions on 𝑐1,

𝑐2, and 𝑐6 , F ∗ (𝑃) mimics the first source communication:

F ∗ (𝑃) −→3 (𝜈 𝑐̃∗)
(
𝑢1!⟨𝑤1,𝑤2⟩. 𝑐3!⟨⟩ | A3

𝜖

(
𝑤?(𝑡) .𝑤 !⟨odd(𝑡)⟩.0

)
|

𝑢1?(𝑥1, 𝑥2). 𝑐7!⟨𝑥1, 𝑥2⟩ | A7

𝑥1,𝑥2

(
𝑥 !⟨5⟩.𝑥?(𝑏) .0

) )
−→ (𝜈 𝑐̃∗)

(
𝑐3!⟨⟩ | A2

𝜖

(
𝑤?(𝑡) .𝑤 !⟨odd(𝑡)⟩.0

)
| 𝑐7!⟨𝑤1,𝑤2⟩ |

A7

𝑥1,𝑥2

(
𝑥 !⟨5⟩.𝑥?(𝑏) .0

) )
Above, 𝑐̃∗ = (𝑐3, 𝑐4, 𝑐5, 𝑐7, 𝑐8, 𝑐9). After reductions on 𝑐3 and 𝑐7,

name 𝑤1 substitutes 𝑥1 and the communication along 𝑤1 can be

mimicked:

F ∗ (𝑃) −→6 (𝜈 𝑐̃∗∗) 𝑤1?(𝑡) . 𝑐4!⟨⟩ | 𝑐4?().𝑤2!⟨odd(𝑡)⟩.𝑐5!⟨⟩ |

𝑐5?().0 | 𝑤1!⟨5⟩. 𝑐8!⟨𝑤2⟩ |
𝑐8?(𝑥2).𝑥2?(𝑏1) .𝑐9!⟨⟩ | 𝑐9?().0

−→ (𝜈 𝑐̃∗∗)
(
𝑐4!⟨5⟩ | 𝑐4?(𝑡).𝑤2!⟨odd(𝑡)⟩.𝑐5!⟨⟩ | 𝑐5?().0 |

𝑐8!⟨𝑤2⟩ | 𝑐8?(𝑥2) .𝑥2?(𝑏1) .𝑐9!⟨⟩ | 𝑐9?().0
)

Above, 𝑐̃∗∗ = (𝑐4, 𝑐5, 𝑐8, 𝑐9). Further reductions follow similarly.

Example 4.10 (Example 3.8, Revisited). Consider again the tail-

recursive session type 𝑆 = 𝜇t.?(Int); !⟨Int⟩; t. Also, let 𝑅 be a

process implementing a channel 𝑟 with type with 𝑆 as follows:

𝑅 = 𝜇𝑋 .𝑅′ 𝑅′ = 𝑟?(𝑧).𝑟 !⟨−𝑧⟩.𝑋

We decompose name 𝑟 using 𝑆 and obtain two channels typed with

MSTs as in Fig. 12. We have: 𝑟1 : 𝜇t.?(Int); t and 𝑟2 : 𝜇t.!⟨Int⟩; t.
The trios produced by A𝑘𝜖

(
𝑅
)
satisfy two properties: they (1)

mimic the recursive behavior of 𝑅 and (2) use the same decomposi-

tion of channel 𝑟 (i.e., 𝑟1,𝑟2) in every instance.

To accomplish (1), each trio of the breakdown of the recursion

body is a recursive trio. For (2), we need two things. First, we expect

to receive all recursive names in the context 𝑥 when entering the

decomposition of the recursion body; further, each trio should use

one recursive name from the names received and propagate all of
them to subsequent trio. Second, we need an extra control trio when

breaking down prefix 𝜇𝑋 : this trio (i) receives recursive names from

the last trio in the breakdown of the recursion body and (ii) activates

another instance with these recursive names.

Using these ideas, we have the decomposed process A1

𝑟1,𝑟2

(
𝑅
)
:

𝑐1?(𝑟1, 𝑟2) .𝑐𝑟
2
!⟨𝑟1, 𝑟2⟩.𝜇𝑋 .𝑐𝑟𝑋 ?(𝑦1, 𝑦2) .𝑐𝑟

2
!⟨𝑦1, 𝑦2⟩.𝑋 | A2

rec 𝑟1,𝑟2

(
𝑅′)

where A2

rec 𝑟1,𝑟2

(
𝑅′)

is the composition of three recursive trios:

𝜇𝑋 .𝑐𝑟
2
?(𝑦1, 𝑦2) .𝑟1?(𝑧1).𝑐𝑟

3
!⟨𝑦1, 𝑦2, 𝑧1⟩.𝑋 |

𝜇𝑋 .𝑐𝑟
3
?(𝑦1, 𝑦2, 𝑧1) .𝑟2?(−𝑧1) .𝑐𝑟

4
!⟨𝑦1, 𝑦2⟩.𝑋 |

𝜇𝑋 .𝑐𝑟
4
?(𝑦1, 𝑦2) .𝑐𝑟𝑋 !⟨𝑦1, 𝑦2⟩.𝑋

𝑐𝑟
2
will first activate the recursive trios with context (𝑟1, 𝑟2). Next,

each trio uses one of 𝑟1, 𝑟2 and propagate them both mimicking the

recursion body. The last recursive trio sends 𝑟1, 𝑟2 to the top-level

control trio, so it can enact another instance of the decomposition

of the recursion body by activating the first recursive trio.

12
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4.5 Measuring the Optimization
Here we measure the improvements of F ∗ ( · ) over F ( · ). A key

metric for comparison is the number of prefixes/sychronizations

induced by each decomposition. This includes (1) the number of

prefixes involved in channel redirections and (2) the number of prop-
agators; both can be counted by already defined notions:

(1) Channel redirections can be counted by the levels of nesting

in the decompositions of types (cf. Fig. 9 and Fig. 12)

(2) The number of propagators is determined by the degree of a

process (cf. Def. 3.2 and Def. 4.5)

These two metrics are related; let us discuss them in detail.

Channel redirections. The decompositions of types for F ( · ) and
F ∗ ( · ) abstractly describe the respective channel redirections. The

type decomposition for F ( · ) (Fig. 9) defines 5 levels of nesting for

the translation of input/output types. Then, at the level of (decom-

posed) processes, channels with these types implement redirections:

the nesting levels correspond to 5 additional prefixes in the decom-

posed process that mimic a source input/output action. In contrast,

the type decomposition for F ∗ ( · ) (Fig. 12) induces no nesting, and
so at the level of processes there are no additional prefixes.

Number of propagators. We define auxiliary functions to count

the number of propagators induced by F ( · ) and F ∗ ( · ). These
functions, denoted #( · ) and #

∗ ( · ), respectively, are defined using

the degree functions (⌊ · ⌉ and ⌊ · ⌉∗) given by Def. 3.2 and Def. 4.5.

Remarkably, ⌊ · ⌉ and #( · ) are not equal. The difference lies in
the number of tail-recursive names in a process. In F ( · ) there
are propagators 𝑐𝑘 but also 𝑐𝑟 , used for recursive names. Def. 3.2,

however, only counts propagators of form 𝑐𝑘 . For any 𝑃 , the number

of propagators 𝑐𝑟 in F (𝑃) is the number of free and bound tail-

recursive names in 𝑃 . We remark that, by definition, there may be

more than one occurrence of a propagator 𝑐𝑟 in F (𝑃): there is at
least one prefix with subject 𝑐𝑟 ; further occurrences depend on the

sequencing structure of the (recursive) type assigned to 𝑟 . On the

other hand, in F ∗ (𝑃) there are propagators 𝑐𝑘 and propagators 𝑐𝑟
𝑋
,

whose number corresponds to the number of recursive variables in

the process. To define #( · ) and #
∗ ( · ), we write brn(𝑃) to denote

bound occurrences of recursive names and #𝑋 (𝑃) to denote the

number of occurrences of recursive variables.

Definition 4.11 (Propagators inF (𝑃) andF ∗ (𝑃)). Given a process
𝑃 , the number of propagators in each decomposition is given by

#(𝑃) = ⌊𝑃⌉ + 2 · |brn(𝑃) | + |rn(𝑃) | #
∗ (𝑃) = ⌊𝑃⌉∗ + #𝑋 (𝑃)

Notice that #
∗ (𝑃) gives the exact number of actions induced by

propagators in F ∗ (𝑃); in contrast, due to propagators 𝑐𝑟 , #(𝑃) gives
the least number of such actions in F (𝑃).

In general, we have #(𝑃) ≥ #
∗ (𝑃), but we can be more precise

for a broad class of processes. We say that a 𝜋 process 𝑃 . 0 is

in normal form if 𝑃 = (𝜈 𝑛) (𝑄1 | . . . | 𝑄𝑛), where each 𝑄𝑖 (with

𝑖 ∈ {1, . . . , 𝑛}) is not 0 and does not contain restriction nor parallel

composition at top-level. We have the following result; see App. C.3.

Proposition 4.1. If 𝑃 is in normal form then #(𝑃) ≥ 5

3
· #

∗ (𝑃).

This result implies that the number of (extra) synchronizations

induced by propagators in F (𝑃) is larger than in F ∗ (𝑃).

4.6 Results
4.6.1 Static Correctness. We first state Thm. 3, which ensures the

typability of A𝑘
𝑥̃

(
·
)
under MSTs. We rely on an auxiliary predicate:

Definition 4.12 (Indexed Names). Suppose some typing environ-

ments Γ,Δ. Let 𝑥 , 𝑦 be two tuples of indexed names. We write

indexedΓ,Δ (𝑦, 𝑥) for the predicate
∀𝑧𝑖 .(𝑧𝑖 ∈ 𝑥 ⇔ ((𝑧𝑖 , . . . , 𝑧𝑖+𝑚−1) ⊆ 𝑦) ∧𝑚 = |H∗ ((Γ,Δ) (𝑧𝑖 )) |))

Theorem 3 (Typability of Breakdown). Let 𝑃 be an initialized
process. If Γ;Δ ⊢ 𝑃 ⊲ ⋄ then

H∗ (Γ \ 𝑥);H∗ (Δ \ 𝑥),Θ ⊢ A𝑘
𝑦̃

(
𝑃
)
⊲ ⋄ (𝑘 > 0)

where𝑥 ⊆ fn(𝑃) and𝑦 such that indexedΓ,Δ (𝑦, 𝑥). Also, balanced(Θ)
with

dom(Θ) = {𝑐𝑘 , 𝑐𝑘+1
, . . . , 𝑐𝑘+|𝑃 |−1

} ∪ {𝑐𝑘+1
, . . . , 𝑐𝑘+|𝑃 |−1

}

and Θ(𝑐𝑘 ) =?(𝑀); end, where𝑀 = (H∗ (Γ),H∗ (Δ)) (𝑦).

Proof. By induction of the structure of 𝑃 ; see § C.4 for details.

□

We now (re)state the minimality result, now based on the de-

composition F ∗ ( · ). The proof follows from Thm. 3; see App. C.5.

Theorem 4 (Minimality Result for 𝜋 , Optimized). Let 𝑃 be
a 𝜋 process with 𝑢 = fn(𝑃). If Γ;Δ ⊢ 𝑃 ⊲ ⋄ thenH∗ (Γ𝜎);H∗ (Δ𝜎) ⊢
F ∗ (𝑃) ⊲ ⋄, where 𝜎 = {init(𝑢)/𝑢}.

4.6.2 Dynamic Correctness. As a complement to the minimality

result, we have established that 𝑃 and F ∗ (𝑃) are behaviorally equiv-
alent (Thm. 5). We overview this result and its required notions.

Thm. 5 relies on MST-bisimilarity (cf. Def. 4.17, ≈M
), a variant

of the characteristic bisimilarity in [9]. We discuss key differences

between the two notions. First, we let an action along name 𝑛 to be

mimicked by an action on a possibly indexed name 𝑛𝑖 , for some 𝑖 .

Definition 4.13 (Indexed name). Given a name 𝑛, we write 𝑛̆ to

either denote 𝑛 or any indexed name 𝑛𝑖 , with 𝑖 > 0.

Suppose we wish to relate 𝑃 and𝑄 using ≈M
, and that 𝑃 performs

an output action involving name 𝑣 . In our setting, 𝑄 should send

a tuple of names: the decomposition of 𝑣 . The second difference is

that output objects should be related by the relation ⊲⊳c:

Definition 4.14 (Relating names). Let 𝜖 denote the empty list. We

define ⊲⊳c as the relation on names defined as

𝜖 ⊲⊳c 𝜖

Γ;Δ ⊢ 𝑛𝑖 ⊲𝐶
𝑛𝑖 ⊲⊳c (𝑛𝑖 , . . . , 𝑛𝑖+|H∗ (𝐶) |−1

)
𝑛̃ ⊲⊳c 𝑚̃1 𝑛𝑖 ⊲⊳c 𝑚̃2

𝑛̃, 𝑛𝑖 ⊲⊳c 𝑚̃1, 𝑚̃2

Characteristic bisimilarity equates typed processes by relying on

characteristic processes and trigger processes. These notions, which
we recall below, need to be adjusted for them to work with MSTs.

Definition 4.15 (Characteristic trigger process [9]). The character-
istic trigger process for type 𝐶 is

𝑡 ⇐C 𝑣 :𝐶
def
= 𝑡?(𝑥).(𝜈 𝑠) (𝑠?(𝑦).[(𝐶)]𝑦 | 𝑠!⟨𝑣⟩.0)

where [(𝐶)]𝑦 is the characteristic process for 𝐶 on name 𝑦 [9].

Our variant of trigger processes is defined as follows:

13
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Definition 4.16 (Minimal characteristic trigger process). Given a

type 𝐶 , the trigger process is

𝑡 ⇐m 𝑣𝑖 :𝐶
def
= 𝑡1?(𝑥).(𝜈 𝑠1) (𝑠1?(𝑦).⟨𝐶⟩𝑦

𝑖
| 𝑠1!⟨𝑣⟩.0)

where 𝑣𝑖 ⊲⊳c 𝑣̃ ,𝑦𝑖 ⊲⊳c 𝑦, and ⟨𝐶⟩𝑦𝑖 is a minimal characteristic process

for type 𝐶 on name 𝑦 (see App. C.2 for a definition).

We are now ready to define MST-bisimilarity:

Definition 4.17 (MST-Bisimilarity). A typed relationℜ is an MST
bisimulation if for all Γ1;Δ1 ⊢ 𝑃1 ℜ Γ2;Δ2 ⊢ 𝑄1,

(1) Whenever Γ1;Δ1 ⊢ 𝑃1

(𝜈𝑚1)𝑛!⟨𝑣:𝐶1 ⟩−→ Δ′
1
;Λ′

1
⊢ 𝑃2 then there

exist 𝑄2, Δ
′
2
, and 𝜎𝑣 such that Γ2;Δ2 ⊢ 𝑄1

(𝜈𝑚2)𝑛̆!⟨𝑣̃:H∗ (𝐶) ⟩
=⇒

Δ′
2
⊢ 𝑄2 where 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ and, for a fresh 𝑡 ,

Γ;Δ′′
1
⊢ (𝜈 𝑚1) (𝑃2 | 𝑡 ⇐C 𝑣 :𝐶1)ℜ

Δ′′
2
⊢ (𝜈 𝑚2) (𝑄2 | 𝑡 ⇐m 𝑣𝜎 :𝐶1)

(2) Whenever Γ1;Δ1 ⊢ 𝑃1

𝑛?(𝑣)
−→ Δ′

1
⊢ 𝑃2 then there exist 𝑄2, Δ

′
2
,

and 𝜎𝑣 such that Γ2;Δ2 ⊢ 𝑄1

𝑛̆?(𝑣̃)
=⇒ Δ′

2
⊢ 𝑄2 where 𝑣𝜎𝑣 ⊲⊳c 𝑣̃

and Γ1;Δ′
1
⊢ 𝑃2 ℜ Γ2;Δ′

2
⊢ 𝑄2,

(3) Whenever Γ1;Δ1 ⊢ 𝑃1

ℓ−→ Δ′
1
⊢ 𝑃2, with ℓ not an output or

input, then there exist 𝑄2 and Δ′
2
such that Γ2;Δ2 ⊢ 𝑄1

ℓ̂
=⇒

Δ′
2
⊢ 𝑄2 and Γ1;Δ′

1
⊢ 𝑃2 ℜ Γ2;Δ′

2
⊢ 𝑄2 and sub(ℓ) = 𝑛

implies sub(ℓ̂) = 𝑛̆.

(4) The symmetric cases of 1, 2, and 3.

The largest such bisimulation is called MST bisimilarity (≈M
).

We can now state our dynamic correctness result:

Theorem 5 (Operational Correspondence). Let 𝑃 be a 𝜋 pro-
cess such that Γ1;Δ1 ⊢ 𝑃1. We have

Γ;Δ ⊢ 𝑃 ≈M H∗ (Γ);H∗ (Δ) ⊢ F ∗ (𝑃)

Proof. By coinduction: we exhibit a binary relation S that

contains (𝑃, F ∗ (𝑃)) and prove that it is an MST bisimulation. The

proof that S is an MST bisimilarity is given by Lem. C.7 and

Lem. C.8 (see App. C.7 for details). □

5 CONCLUDING REMARKS
Concluding Remarks. We showed a minimality result for 𝜋 , a

session-typed 𝜋-calculus. This result says that sequentiality in ses-

sion types is a convenient but not indispensable feature. Follow-

ing [1], we introduced minimal session types (MSTs) for 𝜋 and

defined two decompositions, which transform processes typable

with standard session types into processes typable with MSTs. The

first decomposition composes existing encodability results and the

minimality result for HO; the second decomposition optimizes the

first one by (i) removing redundant synchronizations and (ii) using

the native support of recursion in 𝜋 . For this optimized decompo-

sition, we proved also an operational correspondence result. This

way, our work shows that the minimality result is independent

from the kind of communicated objects (names or abstractions).

Sequentiality is the key distinguishing feature in the specification

of message-passing programs using session types. We remark that

by our minimality results do not mean that sequentiality in session

types is redundant in modeling and specifying processes; rather,

we claim that it is not an indispensable notion to type-checking
them. Because we can type-check session typed processes using

type systems that do not directly support sequencing in types, our

decomposition defines a technique for implementing session types

into languages whose type systems do not support sequentiality.

For the sake of space, we have not considered choice constructs

(selection and branching). There is no fundamental obstacle in treat-

ing them, apart from a very minor caveat: the decomposition in [1]

assumes typed processes in which every selection construct comes

with a corresponding branching (see App. A.2 for an example).

All in all, besides settling a question left open in [1], our work

deepens our understanding about session-based concurrency and

the connection between the first-order and higher-order paradigms.

Related Work. We use the trios decomposition by Parrow [11],

which he studied for an untyped 𝜋-calculus with replication; in

contrast, 𝜋 processes feature recursion. We stress that our goal

is to clarify the role of sequentiality in session types by using

processes with MSTs, which lack sequentiality. While Parrow’s

approach elegantly induces processes typable with MSTs, defining

trios decompositions for 𝜋 is just one path towards our goal.

Our work differs significantly with respect to [1]. The source

language in [1] is HO, based on abstraction-passing, whereas here

we focus on the name-passing calculus 𝜋 . While in HO propaga-

tors carry abstractions, in our case propagators are binding and

carry names. Also, names must be decomposed and propagating

them requires care. Further novelties appear when decomposing

processes with recursion, which require a dedicated collection of

recursive trios (not supported in HO).
Prior works have related session types with different type sys-

tems [2–4]. Loosely related is the work by Dardha et al. [2]. They

compile a session 𝜋-calculus down into a 𝜋-calculus with the linear

type system of [7] extended with variant types. They represent

sequentiality using a continuation-passing style: a session type is

interpreted as a linear type carrying a pair consisting of the original

payload type and a new linear channel type, to be used for ensuing

interactions. The differences are also technical: the approach in [2]

thus involves translations connecting two different 𝜋-calculi and
two different type systems. In contrast, our approach based onMSTs

justifies sequentiality using a single typed process framework.
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A ADDITIONAL EXAMPLES
A.1 First Decomposition: Core Fragment

Example A.1 (Core Fragment). Let 𝑃 be a 𝜋 process which incorporates name-passing and implements channels 𝑢 and 𝑤 with types

𝑆 =!⟨𝑇 ⟩; end and 𝑇 =?(Int); !⟨Bool⟩; end, respectively:
𝑃 = (𝜈 𝑢 : 𝑆) (𝑢!⟨𝑤⟩.𝑤?(𝑡) .𝑤 !⟨odd(𝑡)⟩.0 | 𝑢?(𝑥) .𝑥 !⟨5⟩.𝑥?(𝑏) .0) = (𝜈 𝑢) (𝐴 | 𝐵)

The degree of 𝑃 is ⌊𝑃⌉ = 25. Then, the decomposition of 𝑃 into a collection of first-order processes typed with minimal session types is:

F (𝑃) = (𝜈 𝑐1, . . . , 𝑐25)
(
𝑐1!⟨⟩.0 | A1

𝜖

(
𝑃𝜎

) )
= (𝜈 𝑐1, . . . , 𝑐25)

(
𝑐1!⟨⟩.0 | A1

𝜖

(
(𝜈 𝑢) (𝐴 | 𝐵)𝜎

) )
= (𝜈 𝑐1, . . . , 𝑐25)

(
𝑐1!⟨⟩.0 | (𝜈 𝑢1)A1

𝜖

(
(𝐴 | 𝐵)𝜎 ′) ),

where 𝜎 = init(fn(𝑃)), 𝜎 ′ = 𝜎 · {𝑢1𝑢1/𝑢𝑢}
We have:

A1

𝜖

(
(𝐴 | 𝐵)𝜎 ′) ) = 𝑐1?().𝑐2!⟨⟩.𝑐13!⟨⟩ | A2

𝜖

(
𝐴𝜎 ′) | A13

𝜖

(
𝐵𝜎 ′)

We use some abbreviations for subprocesses of 𝐴 and 𝐵 :

𝐴′ = 𝑤1?(𝑡) .𝐴′′ 𝐴′′ = 𝑤1!⟨odd(𝑡)⟩.0
𝐵′ = 𝑥1!⟨5⟩.𝐵′′ 𝐵′′ = 𝑥1?(𝑏) .0

The breakdown of 𝐴 is:

A2

𝜖

(
𝐴
)
= 𝑐2?().(𝜈 𝑎1)

(
𝑢1!⟨𝑎1⟩.

(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | 𝑎1?(𝑦1).𝑦1?(𝑧1).𝑐3!⟨𝑧1⟩ |

𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ | 𝑐4?(𝑥) .(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

) ) )
A5

𝜖

(
𝐴′) = 𝑐5?().𝑤1?(𝑦2) .𝑐6!⟨𝑦2⟩ | (𝜈 𝑠1)

(
𝑐6?(𝑦2) .𝑐7!⟨𝑦2⟩.𝑐8!

〈〉
|

𝑐7?(𝑦2).(𝜈 𝑠 ′)
(
𝑦2!⟨𝑠 ′⟩.𝑠 ′!⟨𝑠1⟩.0

) )
| 𝑐8?().(𝜈 𝑎2)

(
𝑠1!⟨𝑎2⟩.

(
𝑐10!⟨⟩ | 𝑐10?().0 |

𝑎2?(𝑦3).𝑦3?(𝑡1).
(
𝑐9!⟨⟩ | A9

𝜖

(
𝐴′′) ) ) )

A9

𝜖

(
𝐴′′) = 𝑐9?().(𝜈 𝑎)

(
𝑤2!⟨𝑎⟩.

(
𝑐12!⟨⟩ | 𝑐12?().0 |

𝑎?(𝑦).𝑦?(𝑧1) .𝑐11!⟨𝑧1⟩ | 𝑐10?(𝑧1) .𝑧1?(𝑥).𝑐11!⟨𝑥⟩ | 𝑐11?(𝑥) .(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨odd(𝑡)⟩

) ) )
The breakdown of 𝐵 is:

A13

𝜖

(
𝐵
)
= 𝑐13?().𝑢1?(𝑦4).𝑐14!⟨𝑦4⟩ | (𝜈 𝑠1)

(
𝑐14?(𝑦).𝑐15!⟨𝑦⟩.𝑐16!⟨⟩ |

𝑐15?(𝑦4) .(𝜈 𝑠 ′′)
(
𝑦4!⟨𝑠 ′′⟩.𝑠 ′′!⟨𝑠1⟩.0

)
| 𝑐16?().(𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ |

𝑐21?().0 | 𝑎3?(𝑦5).𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) )

A17

𝜖

(
𝐵′) = 𝑐17?().(𝜈 𝑎4)

(
𝑥1!⟨𝑎4⟩.

(
𝑐20!⟨⟩ | A20

𝜖

(
𝐵′′) | 𝑎4?(𝑦6) .𝑦6?(𝑧1) .𝑐18!⟨𝑧1⟩ |

𝑐18?(𝑧1).𝑧1?(𝑥) .𝑐19!⟨𝑥⟩ | 𝑐19?(𝑥) .(𝜈 𝑠 ′′′)
(
𝑥 !⟨𝑠 ′′′⟩.𝑠 ′′′!⟨5⟩

) ) )
A20

𝜖

(
𝐵′′) = 𝑐20?().𝑥2?(𝑦) .𝑐21!⟨𝑦⟩ |

(𝜈 𝑠1)
(
𝑐21?(𝑦).𝑐22!⟨𝑦⟩.𝑐23!⟨⟩ | 𝑐22?(𝑦).(𝜈 𝑠)

(
𝑦!⟨𝑠⟩.𝑠!⟨𝑠1⟩

)
|

𝑐23?(𝑥).(𝜈 𝑎)
(
𝑠1!⟨𝑎⟩.

(
𝑐25!⟨⟩ | 𝑐25?().0 |

𝑎?(𝑦′) .𝑦′?(𝑏1) .
(
𝑐24!⟨⟩ | 𝑐24?().0

) ) ) )
Names𝑤1 and𝑤2 are typed with𝑀1 =?

(
⟨?(?(⟨?(Int); end⟩); end); end⟩

)
; end and𝑀2 =!

〈
⟨?(?(⟨?(Bool); end⟩); end); end⟩

〉
; end, respectively.

Name 𝑢1 is typed with !

〈
⟨?(?(⟨?(𝑀1, 𝑀2); end⟩); end); end⟩

〉
; end. Now let us observe the reduction chain. The collection of processes

synchronizes on 𝑐1, 𝑐2, 𝑐13 after three reductions.

F (𝑃) −→3 (𝜈 𝑐̃)
(
(𝜈 𝑎1)

(
𝑢1!⟨𝑎1⟩.

(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | 𝑎1?(𝑦1).𝑦1?(𝑧1).𝑐3!⟨𝑧1⟩ | 𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ |

𝑐4?(𝑥) .(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

) ) )
| 𝑢1?(𝑦4) . 𝑐14!⟨𝑦4⟩ | (𝜈 𝑠1)

(
𝑐14?(𝑦).𝑐15!⟨𝑦⟩.𝑐16!⟨⟩ |

𝑐15?(𝑦4).(𝜈 𝑠 ′′)
(
𝑦4!⟨𝑠 ′′⟩.𝑠 ′′!⟨𝑠1⟩.0

)
| 𝑐16?().(𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ |

𝑐21?().0 | 𝑎3?(𝑦5) .𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) )

where 𝑐̃ = (𝑐3, . . . , 𝑐12, 𝑐14, . . . , 𝑐25)
17
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Then, the broken down process 𝐴 communicates with process 𝐵 through channel 𝑢1 by passing name 𝑎1 (highlighted above). Here we notice

that the original transmission of value 𝑤 is not immediately mimicked on channel 𝑢, but it is delegated to some other channel through

series of channel redirections starting with the transmission of name 𝑎1. Further, received name 𝑎1 is locally propagated by 𝑐14 and 𝑐15. This

represents redundant communications on propagators induced by breaking down sequential prefixes produced by two encodings J · K1

𝑔 and

J · K2
(not present in the original process). Another synchronization occurs on 𝑐16.

F (𝑃) −→7 (𝜈 𝑐̃∗) (𝜈 𝑎1)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | 𝑎1?(𝑦1) . 𝑦1?(𝑧1).𝑐3!⟨𝑧1⟩ | 𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ |

𝑐4?(𝑥).(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

)
| (𝜈 𝑠1)

(
(𝜈 𝑠 ′′)

(
𝑎1!⟨𝑠 ′′⟩. 𝑠 ′′!⟨𝑠1⟩.0

)
| (𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ |

𝑐21?().0 | 𝑎3?(𝑦5) .𝑦5?(𝑥1, 𝑥2).
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) ) )

where 𝑐̃∗ = (𝑐3, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

The next step involves communication on 𝑎1: session name 𝑠 ′′ is passed and substitutes variable 𝑦1.

F (𝑃) −→8 (𝜈 𝑐̃∗) (𝜈 𝑠 ′′)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | 𝑠 ′′?(𝑧1) . 𝑐3!⟨𝑧1⟩ | 𝑐3?(𝑧1) .𝑧1?(𝑥).𝑐4!⟨𝑥⟩ |

𝑐4?(𝑥).(𝜈 𝑠)
(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

)
| (𝜈 𝑠1)

(
𝑠 ′′!⟨𝑠1⟩. 0 | (𝜈 𝑎3)

(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ | 𝑐21?().0 |

𝑎3?(𝑦5) .𝑦5?(𝑥1, 𝑥2).
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) ) )

The process then synchronizes on channel 𝑠 ′′. After 𝑧1 is replaced by 𝑠1, it is further sent to the next parallel process through the propagator

𝑐3.

F (𝑃) −→10 (𝜈 𝑐̃∗∗) (𝜈 𝑠1)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | 𝑠1?(𝑥) . 𝑐4!⟨𝑥⟩ | 𝑐4?(𝑥).(𝜈 𝑠)

(
𝑥 !⟨𝑠⟩.𝑠!⟨𝑤1,𝑤2⟩

)
|

(𝜈 𝑎3)
(
𝑠1!⟨𝑎3⟩.

(
𝑐21!⟨⟩ | 𝑐21?().0 |

𝑎3?(𝑦5).𝑦5?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) ) ) )

where 𝑐̃∗∗ = (𝑐4, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

Communication on 𝑠1 leads to variable 𝑥 being substituted by name 𝑎3, which is then passed on 𝑐4 to the next process. In addition, inaction

is simulated by synchronization on 𝑐21.

F (𝑃) −→13 (𝜈 𝑐̃•) (𝜈 𝑎3) ( 𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) | (𝜈 𝑠) ( 𝑎3!⟨𝑠⟩. 𝑠!⟨𝑤1,𝑤2⟩) |

𝑎3?(𝑦5). 𝑦5?(𝑥1, 𝑥2).(𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) )

where 𝑐̃• = (𝑐5, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

Now, the distribution of the decomposition of𝑤 from one process to another can finally be simulated by two reductions: first, a synchronization

on 𝑎3 sends the endpoint of session 𝑠 , which replaces variable 𝑦5; afterwards, the dual endpoint is used to send the names𝑤1,𝑤2, substituting

the variables 𝑥1, 𝑥2.

F (𝑃) −→14 (𝜈 𝑐̃••) (𝜈 𝑠) ( 𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑠!⟨𝑤1,𝑤2⟩ | 𝑠?(𝑥1, 𝑥2) .
(
𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) ) )

F (𝑃) −→15 (𝜈 𝑐̃••)
(
𝑐5!⟨⟩ | A5

𝜖

(
𝐴′) |

𝑐17!⟨⟩ | A17

𝜖

(
𝐵′) {𝑤1𝑤2/𝑥1𝑥2}

)
= 𝑄

where 𝑐̃•• = (𝑐5, . . . , 𝑐12, 𝑐17, . . . , 𝑐25)

Here, we remark that as prefix 𝑠?(𝑥1, 𝑥2) bounds variables 𝑥1, 𝑥2 in the breakdown of the continuation (A17

𝜖

(
𝐵′)

). Thus, there is no need

for propagators to pass contexts: propagators here only serve to enforce the ordering of actions. On the other hand, this rely on arbitrary

process nesting which is induced by the final application of encoding J · K2
in the composition. Thus the trio structure is lost.

Undoubtedly, the first action of the original first-order process has been simulated. We may notice that in 𝑄 names𝑤1,𝑤2 substitute 𝑥1,

𝑥2 and subsequent 𝜏-action on𝑤 can be simulated on name𝑤1. The following reductions follow the same pattern. Thus, the outcome of our

decomposition function is a functionally equivalent process that is typed with minimal session types.
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A.2 First Decomposition: Labelled Choice
We now illustrate how the approach in § 3 can be extended to account for labelled (deterministic) choice (selection and branching constructs).

In HO𝜋 , these constructs are denoted

𝑢 ⊳ 𝑙 .𝑃 𝑢 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼
with reduction rule

𝑛 ⊳ 𝑙 𝑗 .𝑄 | 𝑛 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼 −→ 𝑄 | 𝑃 𝑗 ( 𝑗 ∈ 𝐼 )

Example A.2 (Labelled Choice). Let 𝑃 and 𝑄 be 𝜋 processes which incorporate branching and selection:

𝑃 = 𝑢 ⊲ {𝑙1 : (𝜈 ℎ) (ℎ!⟨𝑚⟩.ℎ?(𝑡).0 | ℎ?(𝑥) .ℎ!⟨𝑥⟩.0), 𝑙2 : 𝑠!⟨𝑚⟩.𝑠?(𝑥).0}
𝑄 = 𝑢 ⊳ 𝑙1 .0

Let 𝑅 denote the restricted parallel composition of 𝑃 and 𝑄 : 𝑅 = (𝜈 𝑢) (𝑃 | 𝑄). The respective process degrees have the same values as

before. The decomposition of 𝑅 is:

F (𝑅) = (𝜈 𝑐1, . . . , 𝑐5) (𝑐1!⟨⟩.0 | A1

𝜖

(
(𝜈 𝑢) (𝑃 | 𝑄)𝜎

)
𝑔), where 𝜎 = {𝑢1𝑢1/𝑢𝑢}

= (𝜈 𝑐1, . . . , 𝑐5) (𝑐1!⟨⟩.0 | (𝜈 𝑢1) (𝑐1?().𝑐2!⟨⟩.𝑐3!

〈〉
| A2

𝜖

(
𝑃
)
𝑔 | A3

𝜖

(
𝑄
)
𝑔))

We consider 𝑃 and 𝑄 separately. We begin with the breakdown of 𝑄 .

A3

𝜖

(
𝑄
)
𝑔 = 𝑐3?().(𝜈 𝑎1)

(
𝑐4!⟨𝑎1⟩.

(
(𝜈 𝑢2)

(
𝑐4?(𝑦).(𝜈 𝑠)

(
𝑦!⟨𝑠⟩.𝑠!⟨𝑢2⟩

) )
| 𝑐5?().0 |

𝑎1?(𝑦′).𝑦′?(𝑦1) .𝑢1 ⊳ 𝑙1 .𝑢1?(𝑧) .𝑐5!⟨⟩.(𝜈 𝑠 ′)
(
𝑧!⟨𝑠 ′⟩.𝑠 ′!⟨𝑦1⟩

) ) )
The breakdown of process 𝑃 is:

A2

𝜖

(
𝑃
)
𝑔 = 𝑐2?().𝑢1 ⊲ {𝑙1 : (𝜈 𝑎2)𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′).𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐21)

(
𝑐3!⟨⟩ | A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔

)
,

𝑙2 : (𝜈 𝑎2)𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐11)
(
𝑐3!⟨⟩ | A3

𝜖

(
𝑃2{𝑦1/𝑢1}

)
𝑔

)
}

As in the previous approach of this example, we are interested in the breakdown of 𝑃1, because it belongs to the selected branch.

A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔 = (𝜈 ℎ1, ℎ2)A3

𝜖

(
ℎ1!⟨𝑚1⟩.ℎ1?(𝑡).0 | ℎ1?(𝑥) .ℎ1!⟨𝑥⟩.0

)
𝑔

= (𝜈 ℎ1, ℎ2)
(
𝑐3?().𝑐4!⟨⟩.𝑐13!⟨⟩ | A4

𝜖

(
ℎ1!⟨𝑚1⟩.ℎ1?(𝑡) .0

)
𝑔 | A13

𝜖

(
ℎ1?(𝑥).ℎ1!⟨𝑥⟩.0

)
𝑔

)
A4

𝜖

(
ℎ1!⟨𝑚1⟩.𝑔ℎ1?(𝑡) .0

)
= 𝑐4?().(𝜈 𝑎3)

(
ℎ1!⟨𝑎3⟩.

(
𝑐7!⟨⟩ | A7

𝜖

(
ℎ2?(𝑡).0

)
𝑔 | 𝑎3?(𝑦2) .𝑦2?(𝑧1) .𝑐5!⟨𝑧1⟩ |

𝑐5?(𝑧1).𝑧1?(𝑥) .𝑐6!

〈
𝑥
〉
| 𝑐6?(𝑥) .(𝜈 𝑠1)

(
𝑥 !⟨𝑠1⟩.𝑠1!⟨𝑚1⟩.0)

) )
A7

𝜖

(
ℎ2?(𝑡) .0

)
𝑔 = 𝑐7?().ℎ2?(𝑦3).𝑐8!⟨𝑦3⟩ | (𝜈 𝑠2) (𝑐8?(𝑦3) .𝑐9!⟨𝑦3⟩.𝑐10!⟨⟩ |

𝑐9?(𝑦3) .(𝜈 𝑠3)
(
𝑦3!⟨𝑠3⟩.𝑠3!⟨𝑠2⟩.0

)
| 𝑐10?().(𝜈 𝑎4)

(
𝑠2!⟨𝑎4⟩.

(
𝑐12!⟨⟩ |

𝑐12?().0 | 𝑎4?(𝑦4).𝑦4?(𝑡1).𝑐11!⟨⟩ | 𝑐11?().0
)
)

A13

𝜖

(
ℎ1?(𝑥) .ℎ1!⟨𝑥⟩.0

)
𝑔 = 𝑐13?().ℎ1?(𝑦5).𝑐14!⟨𝑦5⟩ | (𝜈 𝑠4) (𝑐14?(𝑦5).𝑐15!⟨𝑦5⟩.𝑐16!⟨⟩ |

𝑐15?(𝑦5) .(𝜈 𝑠5)
(
𝑦5!⟨𝑠5⟩.𝑠5!⟨𝑠4⟩.0

)
| 𝑐16?().(𝜈 𝑎5)

(
𝑠4!⟨𝑎5⟩.

(
𝑐21!⟨⟩ |

𝑐21?().0 | 𝑎5?(𝑦6).𝑦6?(𝑥1).𝑐17!⟨𝑥1⟩ | A17

𝑥1

(
ℎ2!⟨𝑥1⟩.0

)
𝑔

) )
)

A17

𝑥1

(
ℎ2!⟨𝑥1⟩.0

)
𝑔 = 𝑐17?(𝑥1).(𝜈 𝑎6)

(
ℎ2!⟨𝑎6⟩.

(
𝑐20!⟨𝑥1⟩ | 𝑐20?().0 | 𝑎6?(𝑦7) .𝑦7?(𝑧2).𝑐18!⟨𝑧2⟩ |

𝑐18?(𝑧2).𝑧2?(𝑥 ′).𝑐19!

〈
𝑥 ′
〉
| 𝑐19?(𝑥 ′) .(𝜈 𝑠6) (𝑥 ′!⟨𝑠6⟩.𝑠6!⟨𝑥1⟩.0

) ) )
In order to verify that the decomposition of 𝑅 simulates the behaviour of the initial process, we refer to its reduction chain. The first

transitions involve synchronization on 𝑐1, 𝑐2, 𝑐3 and 𝑐4. The trigger name 𝑎2 is passed through propagator 𝑐4, such that it replaces variable 𝑦.

F (𝑅) −→4 (𝜈 𝑐5) (𝜈 𝑢1)
(
𝑢1 ⊲ {𝑙1 : (𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐21)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔), 𝑙2 : (𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐11)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃2{𝑦1/𝑢1}

)
𝑔)} | (𝜈 𝑎1)

(
(𝜈 𝑢2)

(
(𝜈 𝑠)

(
𝑎1!⟨𝑠⟩.𝑠!⟨𝑢2⟩

) )
| 𝑐5?().0 |

𝑎1?(𝑦′) .𝑦′?(𝑦1) .𝑢1 ⊳ 𝑙1 .𝑢1?(𝑧) .𝑐5!⟨⟩.(𝜈 𝑠 ′)
(
𝑧!⟨𝑠 ′⟩.𝑠 ′!⟨𝑦1⟩

) )
)

19



Alen Arslanagić, Anda-Amelia Palamariuc, and Jorge A. Pérez

The next step involves synchronization on 𝑎1, which leads to the variable 𝑦′ being substituted by session name 𝑠 .

F (𝑅) −→5 (𝜈 𝑐5) (𝜈 𝑢1)
(
𝑢1 ⊲ {𝑙1 : (𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐21)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔), 𝑙2 : (𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐11)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃2{𝑦1/𝑢1}

)
𝑔

)
} | (𝜈 𝑠)

(
(𝜈 𝑢2)

(
𝑠!⟨𝑢2⟩

)
| 𝑐5?().0 |

𝑠?(𝑦1) .𝑢1 ⊳ 𝑙1 .𝑢1?(𝑧) .𝑐5!⟨⟩.(𝜈 𝑠 ′)
(
𝑧!⟨𝑠 ′⟩.𝑠 ′!⟨𝑦1⟩

) ) )
Now, session name 𝑠 and its dual endpoint can communicate - channel name 𝑢2 is sent, replacing 𝑦1.

F (𝑅) −→6 (𝜈 𝑐5) (𝜈 𝑢1)
(
𝑢1 ⊲ {𝑙1 : (𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐21)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔), 𝑙2 : (𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐11)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃2{𝑦1/𝑢1}

)
𝑔

)
} | (𝜈 𝑢2)

(
𝑐5?().0 | 𝑢1 ⊳ 𝑙1 .𝑢1?(𝑧) .𝑐5!⟨⟩.(𝜈 𝑠 ′)

(
𝑧!⟨𝑠 ′⟩.𝑠 ′!⟨𝑢2⟩

) ) )
At this point, the action of choosing the first branch can be simulated by selecting label 𝑙1 on channel name 𝑢1.

F (𝑅) −→7 (𝜈 𝑐5) (𝜈 𝑢1)
(
(𝜈 𝑎2) 𝑢1!⟨𝑎2⟩.𝑎2?(𝑦′′) .𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐21) (𝑐3!⟨⟩ |

A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔) | (𝜈 𝑢2)

(
𝑐5?().0 | 𝑢1?(𝑧).𝑐5!⟨⟩.(𝜈 𝑠 ′)

(
𝑧!⟨𝑠 ′⟩.𝑠 ′!⟨𝑢2⟩

) )
)

The following two reductions consist of synchronizations on 𝑢1 and 𝑐5. As a result, variable 𝑧 is replaced by the trigger name 𝑎2.

F (𝑅) −→9 (𝜈 𝑎2)
(
𝑎2?(𝑦′′).𝑦′′?(𝑦1) .(𝜈 𝑐3, . . . , 𝑐21)

(
𝑐3!⟨⟩ |

A3

𝜖

(
𝑃1{𝑦1/𝑢1}

)
𝑔

)
| (𝜈 𝑢2)

(
(𝜈 𝑠 ′)

(
𝑎2!⟨𝑠 ′⟩.𝑠 ′!⟨𝑢2⟩

) )
)

Communication on 𝑎2 allows for synchronization on 𝑠 ′. Channel 𝑎2 receives the session name 𝑠 ′, which further receives the dual endpoint 𝑢2.

F (𝑅) −→11 (𝜈 𝑐3, . . . , 𝑐21) (𝜈 𝑢2)
(
𝑐3!⟨⟩ | A3

𝜖

(
𝑃1{𝑢2/𝑢1}

)
𝑔

)
= (𝜈 𝑐3, . . . , 𝑐21) (𝜈 𝑢2)

(
𝑐3!⟨⟩ | (𝜈 ℎ1, ℎ2)

(
𝑐3?().𝑐4!⟨⟩.𝑐13!⟨⟩ |

A4

𝜖

(
ℎ1!⟨𝑚1⟩.ℎ1?(𝑡).0

)
𝑔 | A13

𝜖

(
ℎ1?(𝑥) .ℎ1!⟨𝑥⟩.0

)
𝑔

) )
Remarkably, the obtained result reflects the broken down version of process 𝑃1. Following three more reductions, in which 𝑐3, 𝑐4 and 𝑐13

synchronize with their respective duals, the breakdown of each parallel sub-process will be activated. We refrain from presenting the

remaining reduction steps, as they represent a standard case of name-passing. Clearly, the decomposed process F (𝑅) behaves in a similar

manner to the initial process 𝑅.
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Minimal Session Types for the 𝜋 -calculus

B RELEVANT NOTIONS FROM [10]
B.1 Session Types for HO𝜋

(Sess)

Γ; ∅; {𝑢 : 𝑆} ⊢ 𝑢 ⊲ 𝑆

(Sh)

Γ, 𝑢 : 𝑈 ; ∅; ∅ ⊢ 𝑢 ⊲𝑈

(LVar)

Γ; {𝑥 : 𝐶⊸⋄}; ∅ ⊢ 𝑥 ⊲𝐶⊸⋄
(RVar)

Γ, 𝑋 : Δ; ∅;Δ ⊢ 𝑋 ⊲ ⋄

(Abs)

Γ;Λ;Δ1 ⊢ 𝑃 ⊲ ⋄ Γ; ∅;Δ2 ⊢ 𝑥 ⊲𝐶

Γ\𝑥 ;Λ;Δ1\Δ2 ⊢ 𝜆𝑥 . 𝑃 ⊲𝐶⊸⋄

(App)

Γ;Λ;Δ1 ⊢ 𝑉 ⊲𝐶{⋄ { ∈ {⊸,→} Γ; ∅;Δ2 ⊢ 𝑢 ⊲𝐶

Γ;Λ;Δ1,Δ2 ⊢ 𝑉 𝑢 ⊲ ⋄

(Prom)

Γ; ∅; ∅ ⊢ 𝑉 ⊲𝐶⊸⋄
Γ; ∅; ∅ ⊢ 𝑉 ⊲𝐶→⋄

(EProm)

Γ;Λ, 𝑥 : 𝐶⊸⋄;Δ ⊢ 𝑃 ⊲ ⋄
Γ, 𝑥 : 𝐶→⋄;Λ;Δ ⊢ 𝑃 ⊲ ⋄

(End)

Γ;Λ;Δ ⊢ 𝑃 ⊲𝑇 𝑢 ∉ dom(Γ,Λ,Δ)
Γ;Λ;Δ, 𝑢 : end ⊢ 𝑃 ⊲ ⋄

(Rec)

Γ, 𝑋 : Δ; ∅;Δ ⊢ 𝑃 ⊲ ⋄
Γ; ∅;Δ ⊢ 𝜇𝑋 .𝑃 ⊲ ⋄

(Par)

Γ;Λ𝑖 ;Δ𝑖 ⊢ 𝑃𝑖 ⊲ ⋄ 𝑖 = 1, 2

Γ;Λ1,Λ2;Δ1,Δ2 ⊢ 𝑃1 | 𝑃2 ⊲ ⋄

(Nil)

Γ; ∅; ∅ ⊢ 0 ⊲ ⋄

(Send)

𝑢 : 𝑆 ∈ Δ1,Δ2 Γ;Λ1;Δ1 ⊢ 𝑃 ⊲ ⋄ Γ;Λ2;Δ2 ⊢ 𝑉 ⊲𝑈

Γ;Λ1,Λ2; ((Δ1,Δ2) \ 𝑢 : 𝑆), 𝑢 :!⟨𝑈 ⟩; 𝑆 ⊢ 𝑢!⟨𝑉 ⟩.𝑃 ⊲ ⋄

(Req)

Γ;Λ;Δ1 ⊢ 𝑃 ⊲ ⋄ Γ; ∅; ∅ ⊢ 𝑢 ⊲ ⟨U⟩ Γ; ∅;Δ2 ⊢ 𝑉 ⊲U U ∈ {𝑆, 𝐿}
Γ;Λ;Δ1,Δ2 ⊢ 𝑢!⟨𝑉 ⟩.𝑃 ⊲ ⋄

(Rcv)

Γ;Λ1;Δ1, 𝑢 : 𝑆 ⊢ 𝑃 ⊲ ⋄ Γ;Λ2;Δ2 ⊢ 𝑥 ⊲𝑈

Γ\𝑥 ;Λ1\Λ2;Δ1\Δ2, 𝑢 :?(𝑈 ); 𝑆 ⊢ 𝑢?(𝑥).𝑃 ⊲ ⋄

(Acc)

Γ;Λ1;Δ1 ⊢ 𝑃 ⊲ ⋄ Γ; ∅; ∅ ⊢ 𝑢 ⊲ ⟨U⟩
Γ;Λ2;Δ2 ⊢ 𝑥 ⊲U U ∈ {𝑆, 𝐿}
Γ\𝑥 ;Λ1\Λ2;Δ1\Δ2 ⊢ 𝑢?(𝑥) .𝑃 ⊲ ⋄

(Bra)

∀𝑖 ∈ 𝐼 Γ;Λ;Δ, 𝑢 : 𝑆𝑖 ⊢ 𝑃𝑖 ⊲ ⋄
Γ;Λ;Δ, 𝑢 : &{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼 ⊢ 𝑢 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼 ⊲ ⋄

(Sel)

Γ;Λ;Δ, 𝑢 : 𝑆 𝑗 ⊢ 𝑃 ⊲ ⋄ 𝑗 ∈ 𝐼

Γ;Λ;Δ, 𝑢 : ⊕{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼 ⊢ 𝑢 ⊳ 𝑙 𝑗 .𝑃 ⊲ ⋄

(ResS)

Γ;Λ;Δ, 𝑠 : 𝑆1, 𝑠 : 𝑆2 ⊢ 𝑃 ⊲ ⋄ 𝑆1 dual 𝑆2

Γ;Λ;Δ ⊢ (𝜈 𝑠)𝑃 ⊲ ⋄

(Res)

Γ, 𝑎 : ⟨𝑆⟩;Λ;Δ ⊢ 𝑃 ⊲ ⋄
Γ;Λ;Δ ⊢ (𝜈 𝑎)𝑃 ⊲ ⋄

Figure 13: Typing Rules for HO𝜋 (including selection and branching constructs).

Remark 2. We derive polyadic rules for typing 𝜋 as an expected extension of 𝜋 typing rules in Fig. 14.

B.2 Labelled Transition System for HO𝜋
The typed LTS combines the LTSs in Fig. 15 and Fig. 16.

Definition B.1 (Typed Transition System). A typed transition relation is a typed relation Γ;Δ1 ⊢ 𝑃1

ℓ−→ Δ2 ⊢ 𝑃2 where:

(1) 𝑃1

ℓ−→ 𝑃2 and

(2) (Γ, ∅,Δ1)
ℓ−→ (Γ, ∅,Δ2) with Γ; ∅;Δ𝑖 ⊢ 𝑃𝑖 ⊲ ⋄ (𝑖 = 1, 2).

We write =⇒ for the reflexive and transitive closure of −→,

ℓ
=⇒ for the transitions =⇒ ℓ−→=⇒, and

ℓ̂
=⇒ for

ℓ
=⇒ if ℓ ≠ 𝜏 otherwise =⇒.
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(PolyVar)

Γ, 𝑥 : 𝑀𝑥 ;𝑦 : 𝑀𝑦 ⊢ 𝑥𝑦 ⊲𝑀𝑥𝑀𝑦

(PolySend)

Γ;Δ1, 𝑢 : 𝑆 ⊢ 𝑃 ⊲ ⋄ Γ;Δ2 ⊢ 𝑥 ⊲𝐶

Γ;Δ1,Δ2, 𝑢 :!⟨𝐶⟩; 𝑆 ⊢ 𝑢!⟨𝑥⟩.𝑃 ⊲ ⋄

(PolyRcv)

Γ;Δ1, 𝑢 : 𝑆 ⊢ 𝑃 ⊲ ⋄ Γ;Δ2 ⊢ 𝑥 ⊲𝐶

Γ\𝑥 ;Δ1 \ Δ2, 𝑢 :?(𝐶); 𝑆 ⊢ 𝑢?(𝑥).𝑃 ⊲ ⋄
(PolyResS)

Γ;Δ, 𝑠̃ : 𝑆1, 𝑠̃ : 𝑆2 ⊢ 𝑃 ⊲ ⋄ 𝑆1 dual 𝑆2

Γ;Δ ⊢ (𝜈 𝑠̃)𝑃 ⊲ ⋄

(PolyRes)

Γ;Δ, 𝑎 : 𝐶 ⊢ 𝑃 ⊲ ⋄
Γ;Δ ⊢ (𝜈 𝑎)𝑃 ⊲ ⋄

(Req)

Γ; ∅ ⊢ 𝑢 ⊲ ⟨𝑆⟩ Γ;Δ1 ⊢ 𝑃 ⊲ ⋄
Γ;Δ2 ⊢ 𝑥 ⊲ 𝑆

Γ;Δ1,Δ2 ⊢ 𝑢!⟨𝑥⟩.𝑃 ⊲ ⋄

(Acc)

Γ; ∅ ⊢ 𝑢 ⊲ ⟨𝑆⟩ Γ;Δ1 ⊢ 𝑃 ⊲ ⋄
Γ;Δ2 ⊢ 𝑥 ⊲ 𝑆

Γ\𝑥 ;Δ1 \ Δ2 ⊢ 𝑢?(𝑥) .𝑃 ⊲ ⋄

Figure 14: Polyadic typing rules for 𝜋 .

⟨App⟩

(𝜆𝑥. 𝑃)𝑉 𝜏−→ 𝑃{𝑉/𝑥}

⟨Snd⟩

𝑛!⟨𝑉 ⟩.𝑃
𝑛!⟨𝑉 ⟩
−→ 𝑃

⟨Rv⟩

𝑛?(𝑥) .𝑃
𝑛?⟨𝑉 ⟩
−→ 𝑃{𝑉/𝑥}

⟨Sel⟩

𝑠 ⊳ 𝑙 .𝑃
𝑠⊕𝑙−→ 𝑃

⟨Bra⟩
𝑗 ∈ 𝐼

𝑠 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼
𝑠&𝑙 𝑗−→ 𝑃 𝑗

⟨Alpha⟩

𝑃 ≡𝛼 𝑄 𝑄
ℓ−→ 𝑃 ′

𝑃
ℓ−→ 𝑃 ′

⟨Res⟩

𝑃
ℓ−→ 𝑃 ′ 𝑛 ∉ fn(ℓ)

(𝜈 𝑛)𝑃 ℓ−→ (𝜈 𝑛)𝑃 ′

⟨New⟩

𝑃
(𝜈𝑚)𝑛!⟨𝑉 ⟩

−→ 𝑃 ′ 𝑚1 ∈ fn(𝑉 )

(𝜈 𝑚1)𝑃
(𝜈𝑚1,𝑚)𝑛!⟨𝑉 ⟩

−→ 𝑃 ′

⟨Par𝐿 ⟩

𝑃
ℓ−→ 𝑃 ′ bn(ℓ) ∩ fn(𝑄) = ∅

𝑃 | 𝑄 ℓ−→ 𝑃 ′ | 𝑄

⟨Tau⟩

𝑃
ℓ1−→ 𝑃 ′ 𝑄

ℓ2−→ 𝑄 ′ ℓ1 ≍ ℓ2

𝑃 | 𝑄 𝜏−→ (𝜈 bn(ℓ1) ∪ bn(ℓ2)) (𝑃 ′ | 𝑄 ′)

⟨Rec⟩

𝑃{𝜇𝑋 .𝑃/𝑋 } ℓ−→ 𝑃 ′

𝜇𝑋 .𝑃
ℓ−→ 𝑃 ′

Figure 15: The Untyped LTS for HO𝜋 processes. We omit Rule ⟨Par𝑅⟩.

In this section we recall relevant notions from [10].

B.3 Encoding of HO𝜋 into HO
Definition B.2 (Auxiliary Mappings). We define mappings || · || and

⌊⌊
·
⌋⌋
𝜎
as follows:

• || · || : 2
N −→ V𝜔

is a map of sequences of lexicographically ordered names to sequences of variables, defined inductively as:

||𝜖 || = 𝜖

||𝑛,𝑚̃ || = 𝑥𝑛, ||𝑚̃ || (𝑥 fresh)

• Given a set of session names and variables 𝜎 , the map

⌊⌊
·
⌋⌋
𝜎

: HO → HO is as in Fig. 17.
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[SRv]

𝑠 ∉ dom(Δ) Γ;Λ′
;Δ′ ⊢ 𝑉 ⊲𝑈

(Γ;Λ;Δ, 𝑠 :?(𝑈 ); 𝑆)
𝑠?⟨𝑉 ⟩
−→ (Γ;Λ,Λ′

;Δ,Δ′, 𝑠 : 𝑆)

[ShRv]

Γ; ∅; ∅ ⊢ 𝑎 ⊲ ⟨𝑈 ⟩ Γ;Λ′
;Δ′ ⊢ 𝑉 ⊲𝑈

(Γ;Λ;Δ)
𝑎?⟨𝑉 ⟩
−→ (Γ;Λ,Λ′

;Δ,Δ′)

[SSnd]

Γ, Γ′;Λ′
;Δ′ ⊢ 𝑉 ⊲𝑈 Γ′; ∅;Δ 𝑗 ⊢𝑚 𝑗 ⊲𝑈 𝑗 𝑠 ∉ dom(Δ)

Δ′\(∪𝑗Δ 𝑗 ) ⊆ (Δ, 𝑠 : 𝑆) Γ′; ∅;Δ′
𝑗 ⊢𝑚 𝑗 ⊲𝑈

′
𝑗 Λ′ ⊆ Λ

(Γ;Λ;Δ, 𝑠 :!⟨𝑈 ⟩; 𝑆)
(𝜈𝑚)𝑠!⟨𝑉 ⟩

−→ (Γ, Γ′;Λ\Λ′
; (Δ, 𝑠 : 𝑆,∪𝑗Δ

′
𝑗 )\Δ

′)

[ShSnd]

Γ, Γ′;Λ′
;Δ′ ⊢ 𝑉 ⊲𝑈 Γ′; ∅;Δ 𝑗 ⊢𝑚 𝑗 ⊲𝑈 𝑗 Γ; ∅; ∅ ⊢ 𝑎 ⊲ ⟨𝑈 ⟩

Δ′\(∪𝑗Δ 𝑗 ) ⊆ Δ Γ′; ∅;Δ′
𝑗 ⊢𝑚 𝑗 ⊲𝑈

′
𝑗 Λ′ ⊆ Λ

(Γ;Λ;Δ)
(𝜈𝑚)𝑎!⟨𝑉 ⟩

−→ (Γ, Γ′;Λ\Λ′
; (Δ,∪𝑗Δ

′
𝑗 )\Δ

′)

[Sel]

𝑠 ∉ dom(Δ) 𝑗 ∈ 𝐼

(Γ;Λ;Δ, 𝑠 : ⊕{𝑙𝑖 : 𝑆𝑖 }𝑖∈𝐼 )
𝑠⊕𝑙 𝑗−→ (Γ;Λ;Δ, 𝑠 : 𝑆 𝑗 )

[Bra]

𝑠 ∉ dom(Δ) 𝑗 ∈ 𝐼

(Γ;Λ;Δ, 𝑠 : &{𝑙𝑖 : 𝑇𝑖 }𝑖∈𝐼 )
𝑠&𝑙 𝑗−→ (Γ;Λ;Δ, 𝑠 : 𝑆 𝑗 )

[Tau]

Δ1 −→ Δ2 ∨ Δ1 = Δ2

(Γ;Λ;Δ1)
𝜏−→ (Γ;Λ;Δ2)

Figure 16: Labelled Transition System for Typed Environments.

⌊⌊
𝑤 !⟨𝜆𝑥.𝑄⟩.𝑃

⌋⌋
𝜎

def
= 𝑢!⟨𝜆𝑥.

⌊⌊
𝑄
⌋⌋
𝜎,𝑥

⟩.
⌊⌊
𝑃
⌋⌋
𝜎

⌊⌊
𝑤 ⊲ {𝑙𝑖 : 𝑃𝑖 }𝑖∈𝐼

⌋⌋
𝜎

def
= 𝑢 ⊲ {𝑙𝑖 :

⌊⌊
𝑃𝑖
⌋⌋
𝜎
}𝑖∈𝐼⌊⌊

𝑤?(𝑥) .𝑃
⌋⌋
𝜎

def
= 𝑢?(𝑥) .

⌊⌊
𝑃
⌋⌋
𝜎

⌊⌊
𝑤 ⊳ 𝑙 .𝑃

⌋⌋
𝜎

def
= 𝑢 ⊳ 𝑙 .

⌊⌊
𝑃
⌋⌋
𝜎⌊⌊

(𝜈 𝑛)𝑃
⌋⌋
𝜎

def
= (𝜈 𝑛)

⌊⌊
𝑃
⌋⌋
𝜎,𝑛

⌊⌊
(𝜆𝑥 .𝑄)𝑤

⌋⌋
𝜎

def
= (𝜆𝑥 .

⌊⌊
𝑄
⌋⌋
𝜎,𝑥

) 𝑢⌊⌊
𝑃 | 𝑄

⌋⌋
𝜎

def
=

⌊⌊
𝑃
⌋⌋
𝜎
|
⌊⌊
𝑄
⌋⌋
𝜎

⌊⌊
𝑥 𝑤

⌋⌋
𝜎

def
= 𝑥 𝑢⌊⌊

0
⌋⌋
𝜎

def
= 0

In all cases: 𝑢 =

{
𝑥𝑛 if𝑤 is a name 𝑛 and 𝑛 ∉ 𝜎 (𝑥 fresh)

𝑤 otherwise:𝑤 is a variable or a name 𝑛 and 𝑛 ∈ 𝜎

Figure 17: Auxiliary mapping used to encode HO𝜋 into HO (Def. B.2).

C PROOFS
C.1 Auxiliary Results
Lemma C.1 (Substitution Lemma). Γ;Δ, 𝑥 : 𝑆 ⊢ 𝑃 ⊲ ⋄ and 𝑢 ∉ dom(Γ,Δ) implies Γ;Δ, 𝑢 : 𝑆 ⊢ 𝑃{𝑢/𝑥} ⊲ ⋄.

The following property follows immediately from Def. 4.1 and Def. 4.4:

Lemma C.2 (Typing Broken-down Variables). If Γ;Δ ⊢ 𝑧𝑖 ⊲𝐶 then G(Γ); G(Δ) ⊢ 𝑧̃ ⊲ G(𝐶) where 𝑧̃ = (𝑧𝑖 , . . . , 𝑧𝑖+|G(𝐶) |−1
).

Lemma C.3 (Shared environment weakening). If Γ;Δ ⊢ 𝑃 ⊲ ⋄ then Γ, 𝑢 : ⟨𝐶⟩;Δ ⊢ 𝑃 ⊲ ⋄.

Lemma C.4 (Shared environment strengthening). If Γ;Δ ⊢ 𝑃 ⊲ ⋄ and 𝑢 ∉ fn(𝑃) then Γ \ 𝑢;Δ ⊢ 𝑃 ⊲ ⋄.

Lemma C.5. Let 𝑟̃ be tuple of channel names and 𝑆 a recursive session type. If 𝑟̃ : R★(!⟨𝐶⟩; 𝑆) and 𝑘 = 𝑓 (!⟨𝐶⟩; 𝑆) then 𝑟𝑘 : 𝜇t.!⟨G(𝐶)⟩; t.

C.2 Decompose by Composition
Theorem 1 (Typability of Breakdown). Let P be an initialized 𝜋 process. If Γ;Δ,Δ𝜇 ⊢ 𝑃 ⊲ ⋄, then H(Γ′),Φ′

;H(Δ),Θ′ ⊢ A𝑘
𝜖

(
𝑃
)
𝑔 ⊲ ⋄,

where 𝑘 > 0; 𝑟̃ = dom(Δ𝜇 );Φ′ =
∏

𝑟 ∈𝑟 𝑐
𝑟

: ⟨⟨?(R ′★(Δ𝜇 (𝑟 ))); end⟩⟩; and balanced(Θ′) with
dom(Θ′) = {𝑐𝑘 , 𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉−1
}
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such that Θ′(𝑐𝑘 ) =?(·); end.

Proof.

Γ;Δ,Δ𝜇 ⊢ 𝑃 ⊲ ⋄ (Assumption) (1)

(⟨Γ⟩)1
; (⟨Δ⟩)1, (⟨Δ𝜇⟩)1 ⊢ J𝑃K1

𝑔 ⊲ ⋄ (Theorem 5.1 [10], (10)) (2)

G((⟨Γ⟩)1),Φ; G((⟨Δ⟩)1),Θ ⊢ B𝑘
𝜖

(
J𝑃K1

𝑔

)
⊲ ⋄ (Theorem 3.27 [1], (11)) (3)

JG((⟨Γ⟩)1)K2, JΦK2
; JG((⟨Δ⟩)1)K2, JΘK2 ⊢ JB𝑘

𝜖

(
J𝑃K1

𝑔

)
K2 ⊲ ⋄ (Theorem 5.2 [10], (12)) (4)

H(Γ),Φ′
;H(Δ),Θ′ ⊢ A𝑘

𝜖

(
𝑃
)
𝑔 ⊲ ⋄ ( Definition of A𝑘

𝜖

(
·
)
𝑔, (5)

Definition 3.5, Definition 3.9, (4))

□

Theorem 2 (Minimality Result for 𝜋 ). Let 𝑃 be a closed 𝜋 process, with 𝑢 = fn(𝑃) and 𝑣̃ = rn(𝑃). If Γ;Δ,Δ𝜇 ⊢ 𝑃 ⊲ ⋄, where Δ𝜇 only
involves recursive session types, then
H(Γ𝜎);H(Δ𝜎),H(Δ𝜇𝜎) ⊢ F (𝑃) ⊲ ⋄, where 𝜎 = {init(𝑢)/𝑢}.

Proof.

Γ;Δ ⊢ 𝑃 ⊲ ⋄ (Assumption) (6)

Γ𝜎 ;Δ𝜎 ⊢ 𝑃𝜎 ⊲ ⋄ (Lemma C.1, (6)) (7)

H(Γ𝜎),Φ′
;H(Δ𝜎),Θ′ ⊢ A𝑘

𝜖

(
𝑃𝜎

)
𝑔 ⊲ ⋄ (P is initialized, Theorem 1) (8)

To complete the proof, let us construct a well-formed derivation tree by using the appropriate typing rules for the higher-order calculus.

Note that we apply one of the polyadic rules, i.e. PolyResS, used for typing HO𝜋 , derived by Arslanagić et al. [1].

for 𝑟 ∈ 𝑣̃ H(Γ𝜎),Φ′
; 𝑟̃ : H(𝑆) ⊢ 𝑐𝑟 ?(𝑏) .(𝜈 𝑠) (𝑏!⟨𝑠⟩.𝑠!⟨̃𝑟 ⟩) ⊲ ⋄

Par ( |𝑣̃ | − 1 times)

H(Γ𝜎),Φ′
;H(Δ𝜇𝜎) ⊢

∏
𝑟 ∈𝑣̃ 𝑃

𝑟
(9)

where 𝑆 = Δ𝜇 (𝑟 ). By the definition of Φ′
we have 𝑐𝑟 : ⟨⟨?(R ′★(Δ𝜇 (𝑟 ))); end⟩⟩ ∈ Φ′

and by Def. 3.5 we have R ′★(Δ𝜇 (𝑟 )) = H(𝑆), so the

right-hand of (9) is well-typed.

Nil

H(Γ𝜎),Φ′
;H(Δ𝜎) ⊢ 0 ⊲ ⋄

Send

H(Γ𝜎),Φ′
;H(Δ𝜎), 𝑐𝑘 !⟨·⟩; end ⊢ 𝑐𝑘 !⟨·⟩ (9)

Par

H(Γ𝜎),Φ′
;H(Δ𝜎),H(Δ𝜇𝜎), 𝑐𝑘 !⟨·⟩; end ⊢ 𝑐𝑘 !⟨·⟩.0 | ∏𝑟 ∈𝑣̃ 𝑃

𝑟

(10)

(10) (8)

Par

H(Γ𝜎),Φ′
;H(Δ𝜎),H(Δ𝜇𝜎), 𝑐𝑘 !⟨·⟩; end,Θ′ ⊢ 𝑐𝑘 !⟨·⟩.0 | ∏𝑟 ∈𝑣̃ 𝑃

𝑟 | A𝑘
𝜖

(
𝑃𝜎

)
𝑔 ⊲ ⋄

PolyResS

H(Γ𝜎);H(Δ𝜎),H(Δ𝜇𝜎) ⊢ (𝜈 𝑐̃) (𝜈 𝑐̃𝑟 )
( ∏

𝑟 ∈𝑣̃ 𝑃
𝑟 | 𝑐𝑘 !⟨⟩.0 | A𝑘

𝜖

(
𝑃𝜎

)
𝑔

)
□

C.3 Measuring the Optimization
Proposition 4.1. If 𝑃 is in normal form then #(𝑃) ≥ 5

3
· #

∗ (𝑃).

Proof. Because #(𝑄) ≥ ⌊𝑃⌉ + 2 · |brn(𝑃) |, it suffices to show that ⌊𝑃⌉ + 2 · |brn(𝑃) | ≥ 5

3
· #

∗ (𝑃). The proof is by induction on structure of

𝑃 . We show one base case (output prefix followed by inaction) and three inductive cases (input, restriction, and parallel composition); other

cases are similar:

• Case 𝑃 = 𝑢!⟨𝑥⟩.0. Then ⌊𝑃⌉ = 4, |brn(𝑃) | = 0, and ⌊𝑃⌉∗ = 2. So, we have ⌊𝑃⌉ + 2 · |brn(𝑃) | ≥ 5

3
· #

∗ (𝑃)
• Case 𝑃 = 𝑢!⟨𝑥⟩.𝑃 ′ with 𝑃 ′ . 0. By IH we know ⌊𝑃 ′⌉ + brn(𝑃 ′) ≥ 5

3
· #

∗ (𝑃 ′). We know ⌊𝑃⌉ = ⌊𝑃 ′⌉ + 3 , ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 and

#𝑋 (𝑃) = #𝑋 (𝑃 ′). So, ⌊𝑃 ′⌉ + 2 · |brn(𝑃 ′) | + 3 ≥ 5

3
· #

∗ (𝑃) + 1 > 5

3
· (#∗ (𝑃) + 1).

• Case 𝑃 = (𝜈 𝑟 : 𝑆)𝑃 ′ with tr(𝑆). Then ⌊𝑃⌉ = ⌊𝑃 ′⌉ (by Def. 3.2) and |brn(𝑃) | = |brn(𝑃 ′) | + 1. Further, we have #𝑋 (𝑃) = #𝑋 (𝑃 ′) and
⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1. Now, by IH we can conclude that ⌊𝑃⌉ + 2 · ( |brn(𝑃) | + 1) ≥ 5

3
· #

∗ (𝑃) + 1 > 5

3
· (#∗ (𝑃) + 1).
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• Case 𝑃 = 𝑃1 | . . . | 𝑃𝑛 . By IH we know

⌊𝑃𝑖 ⌉ + 2 · |brn(𝑃𝑖 ) | ≥
5

3

· #
∗ (𝑃𝑖 ) (11)

for 𝑖 ∈ {1, . . . , 𝑛}. We know ⌊𝑃⌉ =
∑𝑛
𝑖=1

⌊𝑃𝑖 ⌉ + (𝑛 − 1), |brn(𝑃) | = ∑𝑛
𝑖=1

|brn(𝑃𝑖 ) |, and ⌊𝑃⌉∗ =
∑𝑛
𝑖=1

#
∗ (𝑃𝑖 ) + (𝑛 − 1). So, we should

show

𝑛∑
𝑖=1

⌊𝑃𝑖 ⌉ + 2 ·
𝑛∑
𝑖=1

|brn(𝑃𝑖 ) | + (𝑛 − 1) ≥ 5

3

·
( 𝑛∑
𝑖=1

#
∗ (𝑃𝑖 ) + (𝑛 − 1)

)
(12)

That is,

𝑛∑
𝑖=1

(⌊𝑃𝑖 ⌉ + 2 · |brn(𝑃𝑖 ) | + 1) ≥ 5

3

·
𝑛∑
𝑖=1

(
#
∗ (𝑃𝑖 ) + 1

)
Equivalent to

𝑛∑
𝑖=1

(⌊𝑃𝑖 ⌉ + 2 · |brn(𝑃𝑖 ) | + 1) ≥
𝑛∑
𝑖=1

( 5

3

· (#∗ (𝑃𝑖 ) + 1)
)

We show that for each 𝑖 = {1, . . . , 𝑛} the following holds:

⌊𝑃𝑖 ⌉ + 2 · |brn(𝑃𝑖 ) | + 1 ≥ 5

3

· (#∗ (𝑃𝑖 ) + 1)

That is

𝐴 =
⌊𝑃𝑖 ⌉ + 2 · |brn(𝑃𝑖 ) | + 1

#
∗ (𝑃𝑖 ) + 1

≥ 5

3

As 𝑃 is in the normal form, we know that 𝑃𝑖 ≡ 𝛼.𝑃 ′
𝑖
where 𝛼 is some sequential prefix. So, by Def. 3.2 and 𝐷𝑒𝑓 . 4.5 we know that for

some 𝑝∗ and 𝑝 we have ⌊𝑃𝑖 ⌉∗ = 𝑝∗ + ⌊𝑃 ′
𝑖
⌉∗, #𝑋 (𝑃𝑖 ) = #𝑋 (𝑃 ′

𝑖
), and ⌊𝑃𝑖 ⌉ = 𝑝 + ⌊𝑃 ′

𝑖
⌉. We can distinguish two sub-cases: (i) 𝑃 ′

𝑖
. 0 and

(ii) otherwise. We consider sub-case (i). By (11) we have:

𝐴 ≥
5

3
· #

∗ (𝑃 ′
𝑖
) + 𝑝 + 1

#
∗ (𝑃 ′

𝑖
) + 𝑝∗ + 1

≥ 5

3

We need to find prefix 𝛼 such that 𝑝 and
𝑝
𝑝∗ are the least. We notice that for the output prefix we have 𝑝 = 3 and

𝑝
𝑝∗ = 3

1
. So, the

following holds

5

3
· #

∗ (𝑃 ′
𝑖
) + 4

#
∗ (𝑃 ′

𝑖
) + 2

=
5

3

·
#
∗ (𝑃 ′

𝑖
) + 12

5

#
∗ (𝑃 ′

𝑖
) + 2

≥ 5

3

Now, we consider sub-case (ii) when 𝑃 ′
𝑖
= 0. In this case we have ⌊𝑃 ′

𝑖
⌉ + 2 · brn(𝑃 ′

𝑖
) = #

∗ (𝑃 ′
𝑖
) = 1. We pick 𝑝 and 𝑝∗ as in the previous

sub-case. So, we have

⌊𝑃𝑖 ⌉ + 2 · |brn(𝑃𝑖 ) | + 1

#
∗ (𝑃𝑖 ) + 1

=
1 + 3 + 1

1 + 1

=
5

3

So, we can conclude that inequality (12) holds.

□

C.4 Typability of the Optimized Breakdown Function
Lemma C.6 (Typability of Breakdown: A𝑘

rec 𝑦̃

(
·
)
𝑔). Let 𝑃 be an initialized process. If Γ · 𝑋 : Δ𝜇 ;Δ ⊢ 𝑃 ⊲ ⋄ then:

G(Γ \ 𝑥);Θ ⊢ A𝑘rec 𝑦̃

(
𝑃
)
𝑔 ⊲ ⋄ (𝑘 > 0)

where 𝑥 ⊆ fn(𝑃) such that Δ \ 𝑥 = ∅ , 𝑦 = 𝑣̃ ·𝑚 where 𝑣̃ is such that and indexedΓ,Δ (𝑣̃, 𝑥) and𝑚 = codom(𝑔). Also, Θ = Θ𝜇 ,Θ𝑋 (𝑔) where
balanced(Θ𝜇 ) with dom(Θ𝜇 ) = {𝑐𝑟

𝑘
, 𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

} ∪ {𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

} and Θ𝜇 (𝑐𝑟𝑘 ) = 𝜇t.?(𝑁 ); t if 𝑔 ≠ ∅, otherwise Θ𝜇 (𝑐𝑟𝑘 ) = ⟨𝑁 ⟩
where 𝑁 = (G(Γ),G(Δ𝜇 · Δ)) (𝑦). and Θ𝑋 (𝑔) = ⋃

𝑋 ∈dom(𝑔) 𝑐
𝑟
𝑋

: ⟨𝑀𝑋 ⟩ where𝑀𝑋 = (G(Γ),G(Δ𝜇 )) (𝑔(𝑋 )).

Proof. The proof is by the induction of the structure of 𝑃 . We consider cases when 𝑔 ≠ ∅, as cases when 𝑔 = ∅ are similar.

(1) Case 𝑃 = 𝑋 . The only rule that can be applied here is RVar:

RVar

Γ · 𝑋 : Δ;Δ ⊢ 𝑋 ⊲ ⋄ (13)

Let 𝑥 = ∅ as fn(𝑃) = ∅. So, 𝑦 =𝑚 where𝑚 = 𝑔(𝑋 ). Since ⌊𝑋 ⌉∗ = 1 we have Θ𝜇 = {𝑐𝑟
𝑘

: 𝜇t.?(𝑁 ); t} where 𝑁 = (G(Γ),G(Δ)) (𝑦). In
this case Δ𝜇 = Δ, thus 𝑁 = 𝑀 . We shall then prove the following judgment:

G(Γ \ 𝑥);Θ ⊢ A𝑘rec 𝑦̃

(
𝑋
)
𝑔 ⊲ ⋄ (14)
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By Tab. 3, we have:

A𝑘rec 𝑦̃

(
𝑋
)
𝑔 = 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑦) .𝑐𝑟𝑋 !⟨𝑦⟩.𝑋

RVar

G(Γ \ 𝑥), 𝑋 : Θ;Θ ⊢ 𝑋
PolySend

G(Γ \ 𝑥), 𝑋 : Θ;𝑦 : 𝑀 ⊢ 𝑦 ⊲𝑀
Req

G(Γ \ 𝑥), 𝑋 : Θ; 𝑐𝑟
𝑋

: ⟨𝑀⟩, 𝑦 : 𝑀 ⊢ 𝑐𝑟
𝑋

!⟨𝑦⟩.𝑋
(15)

The following tree proves this case:

(15)

PolySend

G(Γ \ 𝑥), 𝑋 : Θ;𝑦 : 𝑀 ⊢ 𝑦 ⊲𝑀
Rcv

G(Γ \ 𝑥), 𝑋 : Θ;Θ ⊢ 𝑐𝑟
𝑘

?(𝑦) .𝑐𝑟
𝑋

!⟨𝑦⟩.𝑋 ⊲ ⋄
Rec

G(Γ \ 𝑥);Θ ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦).𝑐𝑟
𝑋

!⟨𝑦⟩.𝑋 ⊲ ⋄

(16)

where Θ = Θ𝜇 , 𝑐
𝑟
𝑋

: 𝜇t.!⟨𝑀⟩; t.
(2) Case 𝑃 = 𝑢𝑖 !⟨𝑧 𝑗 ⟩.𝑃 ′. Let 𝑢𝑖 : 𝐶 . We distinguish three sub-cases: (i) 𝐶 = 𝑆 = 𝜇t.!⟨𝐶𝑧⟩; 𝑆 ′, (ii) 𝐶 = 𝑆 =!⟨𝐶𝑧⟩; 𝑆 ′, and (iii) 𝐶 = ⟨𝐶𝑧⟩. We

consider first two sub-cases, as (iii) is shown similarly. The only rule that can be applied here is Send:

Γ · 𝑋 : Δ𝜇 ;Δ · 𝑢𝑖 : 𝑆 ′ ⊢ 𝑃 ′ ⊲ ⋄ Γ · 𝑋 : Δ𝜇 ;Δ𝑧 ⊢ 𝑧 𝑗 ⊲𝐶
Send

Γ · 𝑋 : Δ𝜇 ;Δ · 𝑢𝑖 : 𝑆 · Δ𝑧 ⊢ 𝑢𝑖 !⟨𝑧 𝑗 ⟩.𝑃 ′ ⊲ ⋄
(17)

Then, by IH on the right assumption of (17) we have:

G(Γ \ 𝑥 ′);Θ′ ⊢ A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
𝑔 ⊲ ⋄ (18)

where 𝑥 ′ ⊆ fn(𝑃) such that (Δ, 𝑟 : 𝑆 ′) \ 𝑥 ′ = ∅, and 𝑦′ = 𝑣̃ ′ ∪𝑚 where indexedΓ,Δ,𝑟 :𝑆′ (𝑣̃ ′, 𝑥 ′). Also, Θ′ = Θ′
𝜇 ,Θ𝑋 where Θ′

𝜇 such that

balanced(Θ′
𝜇 ) with

dom(Θ′
𝜇 ) = {𝑐𝑟

𝑘+1
, 𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗+1

} ∪ {𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗−1

, 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗+1

}

and Θ′
𝜇 (𝑐𝑟𝑘+1

) = 𝜇t.?(𝑁 ′); t where 𝑁 ′ = (G(Γ),G(Δ𝜇 · Δ · 𝑢𝑖 : 𝑆)) (𝑦′). By applying Lem. C.2 on the second assumption of (17) we

have:

G(Γ · 𝑋 : Δ𝜇 ); G(Δ𝑧) ⊢ 𝑧̃ ⊲ G(𝐶𝑧) ⊲ ⋄ (19)

Let 𝜎 = next(𝑢𝑖 ) and in sub-case (i) 𝜎1 = {𝑛̃/𝑢̃} where 𝑛 = (𝑢𝑖+1, . . . , 𝑢𝑖+G(𝑆) ) and 𝑢 = (𝑢𝑖 , . . . , 𝑢𝑖+G(𝑆)−1
), otherwise (ii) 𝜎1 = 𝜖 . We

define 𝑥 = 𝑥 ′, 𝑧 and 𝑦 = 𝑦′𝜎1, 𝑧̃ · 𝑢𝑖 .
By construction 𝑥 ⊆ 𝑃 and (Δ · 𝑢𝑖 : 𝑆 · Δ𝑧) \ 𝑥 = ∅. Further, we may notice that 𝑦 = 𝑣̃ ·𝑚 such that indexedΓ,Δ,𝑢𝑖 :𝑆,Δ𝑧

(𝑣̃, 𝑥) and
𝑦′ =𝑚 ∪ fnb(𝑃 ′, 𝑦). Let Θ = Θ𝜇 ,Θ𝑋 where

Θ𝜇 = Θ′
𝜇 , 𝑐

𝑟
𝑘

: 𝜇t.?(𝑁 ); t, 𝑐𝑟
𝑘+1

: 𝜇t.!⟨𝑁 ′⟩; t

where 𝑁 = (G(Γ),G(Δ𝜇 · Δ · 𝑢𝑖 : 𝑆 · Δ𝑧)) (𝑦). By construction and since ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 we have

dom(Θ𝜇 ) = {𝑐𝑟
𝑘
, 𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

} ∪ {𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

}

and balanced(Θ𝜇 ). By Tab. 3 we have:

A𝑘rec 𝑦̃

(
𝑃
)
𝑔 = 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑦) .𝑢𝑙 !⟨̃𝑧⟩.𝑐𝑟𝑘+1

!⟨𝑦′𝜎1⟩.𝑋 | A𝑘+1

rec 𝑦̃′𝜎1

(
𝑃 ′𝜎

)
𝑔 (20)

where in sub-case (i) 𝑙 = 𝑖 and in sub-case (ii) 𝑙 = 𝑓 (𝑆). We shall prove the following judgment:

G(Γ \ 𝑥);Θ ⊢ A𝑘rec 𝑦̃

(
𝑃
)
𝑔 ⊲ ⋄ (21)

Let Δ1 = Δ, 𝑢𝑖 : 𝑆,Δ𝑧 and 𝑢𝑖 = bn(𝑢𝑖 : 𝑆). We use some auxiliary sub-trees:

RVar

G(Γ \ 𝑥) · 𝑋 : Θ;Θ ⊢ 𝑋 ⊲ ⋄ (22)

(22)

PolyVar

G(Γ \ 𝑥) · 𝑋 : Θ; G(Δ, 𝑢𝑖𝜎 : 𝑆 ′) ⊢ 𝑦′𝜎1 ⊲ 𝑁
′

PolySend

G(Γ \ 𝑥) · 𝑋 : Θ;Θ,G(Δ, 𝑢𝑖𝜎 : 𝑆 ′) ⊢ 𝑐𝑟
𝑘+1

!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄
(23)

Here, in typing the right-hand assumption, we may notice that in sub-case (i) G(𝑢𝑖 : 𝑆) = 𝑢𝑖 :!⟨G(𝐶𝑧)⟩; end,G(𝑆 ′) and G(𝑢𝑖𝜎 : 𝑆 ′) =
𝑢𝑖+1 : G(𝑆 ′) where 𝑢𝑖+1 = (𝑢𝑖+1, . . . , 𝑢𝑖+|G(𝑆′) |). So right-hand side follows by Def. 4.12 and Lem. C.1. Otherwise, in sub-case (ii) by

Def. 4.4 and Def. 12 we know G(𝑢𝑖 : 𝑆) = G(𝑢𝑖𝜎 : 𝑆 ′) and by definition 𝑢𝑖 ⊆ 𝑚 ⊆ 𝑦′𝜎1.
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(23) (19)

PolySend

G(Γ \ 𝑥) · 𝑋 : Θ;Θ,G(Δ1) ⊢ 𝑢𝑙 !⟨̃𝑧⟩.𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

(24)

(24)

PolyVar

G(Γ \ 𝑥) · 𝑋 : Θ; G(Δ1) ⊢ 𝑦 ⊲ 𝑁
PolyRcv

G(Γ \ 𝑥) · 𝑋 : Θ;Θ ⊢ 𝑐𝑟
𝑘

?(𝑦).𝑢𝑙 !⟨̃𝑧⟩.𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

Rec

G(Γ \ 𝑥);Θ ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦).𝑢𝑙 !⟨̃𝑧⟩.𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

(25)

We may notice that by Def. 4.4 and Def. 12 we have G(Δ1) = G(Δ), 𝑢𝑖 : G(𝑆),G(Δ𝑧) So, in sub-case (i) as 𝑢𝑖 = 𝑢𝑙 we have

G(Δ1) (𝑢𝑙 ) =!⟨G(𝐶𝑧)⟩; end. In sub-case (ii), by Lem. C.5 and as 𝑢𝑙 = 𝑢𝑓 (𝑆) we know G(Δ1) (𝑢𝑙 ) = 𝜇t.!⟨G(𝐶𝑧)⟩; t. The following tree
proves this case:

(25) (18)

Par

G(Γ \ 𝑥);Θ ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦).𝑢𝑙 !⟨̃𝑧⟩.𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 | A𝑘+1

rec 𝑦̃′𝜎1

(
𝑃 ′𝜎

)
𝑔 ⊲ ⋄

(26)

Note that we have used the following for the right assumption of (26):

A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
≡𝛼 A𝑘+1

rec 𝑦̃′𝜎1

(
𝑃 ′𝜎

)
(3) Case 𝑃 = 𝑢𝑖?(𝑧) .𝑃 ′. We distinguish three sub-cases: (i)𝐶 = 𝑆 = 𝜇t.?(𝐶𝑧); 𝑆 ′, (ii)𝐶 = 𝑆 =?(𝐶𝑧); 𝑆 ′, and (iii)𝐶 = ⟨𝐶𝑧⟩. The only rule that

can be applied here is Rcv:

Γ · 𝑋 : Δ𝜇 ;Δ, 𝑢𝑖 : 𝑆 ′,Δ𝑧 ⊢ 𝑃 ′ ⊲ ⋄ Γ · 𝑋 : Δ𝜇 ;Δ𝑧 ⊢ 𝑧 ⊲𝐶
Rcv

(Γ \ 𝑧) · 𝑋 : Δ𝜇 ;Δ, 𝑢𝑖 : 𝑆 ⊢ 𝑢𝑖?(𝑧) .𝑃 ′ ⊲ ⋄
(27)

Let 𝑥 ′ ⊆ fn(𝑃 ′) such that (Δ · 𝑢𝑖 : 𝑆 ′ · Δ𝑧) \ 𝑥 ′ = ∅ and 𝑦′ = 𝑣̃ ∪𝑚 such that indexedΓ,Δ,𝑢𝑖 :𝑆′ (𝑣̃ ′, 𝑥 ′). Also, Θ′ = Θ′
𝜇 ,Θ𝑋 (𝑔) where

balanced(Θ′
𝜇 ) with

dom(Θ′
𝜇 ) = {𝑐𝑟

𝑘+1
, 𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗+1

} ∪ {𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗+1

}

and Θ′
𝜇 (𝑐𝑟𝑘+1

) = 𝜇t.?(𝑁 ′); t, where 𝑁 ′ = (G(Γ),G(Δ𝜇 · Δ · 𝑢𝑖 : 𝑆)) (𝑦′). Then, by IH on the right assumption of (17) we have:

G(Γ \ 𝑥 ′);Θ′
𝜇 ⊢ A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (28)

By applying Lem. C.2 to the second assumption of (17), we have:

G(Γ) · 𝑋 : Θ𝜇 ; G(Δ𝑧) ⊢ 𝑧̃ ⊲ G(𝐶) (29)

Let 𝜎 = next(𝑢𝑖 ) and in sub-case (i) 𝜎1 = {𝑛̃/𝑢̃} where 𝑛 = (𝑢𝑖+1, . . . , 𝑢𝑖+G(𝑆) ) and 𝑢 = (𝑢𝑖 , . . . , 𝑢𝑖+G(𝑆)−1
), otherwise in sub-case (ii)

𝜎1 = 𝜖 . We define 𝑥 = 𝑥 ′𝜎 \ 𝑧 and 𝑦 = 𝑦′𝜎1 \ 𝑧̃ with |𝑧̃ | = |G(𝐶) |. By construction 𝑥 ⊆ fn(𝑃) and (Δ, 𝑟 : 𝑆) \ 𝑥 = ∅. Further, we may

notice that 𝑦 = 𝑣̃ ·𝑚 where 𝑣̃ is such that indexedΓ,Δ,𝑟 :𝑆,Δ𝑧
(𝑣̃, 𝑥) and 𝑦 =𝑚 ∪ fnb(𝑃 ′, 𝑦𝑧̃). Let Θ = Θ𝜇 ,Θ𝑋 where

Θ𝜇 = Θ′
𝜇 , 𝑐

𝑟
𝑘

: 𝜇t.?(𝑁 ); t, 𝑐𝑟
𝑘+1

: 𝜇t.!⟨𝑁 ′⟩; t

where 𝑁 = (G(Γ),G(Δ𝜇 · Δ · 𝑢𝑖 : 𝑆,Δ𝑧)) (𝑦). By construction and since ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 we have

dom(Θ𝜇 ) = {𝑐𝑟
𝑘
, 𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

} ∪ {𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

}

and balanced(Θ𝜇 ). By Tab. 3, we have:

A𝑘rec 𝑦̃

(
𝑃
)
𝑔 = 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑦) .𝑢𝑙 ?(𝑧̃) .𝑐𝑟𝑘+1

!⟨𝑦′𝜎1⟩.𝑋 | A𝑘+1

rec 𝑦̃

(
𝑃 ′𝜎

)
𝑔 (30)

where in sub-case (i) 𝑙 = 𝑖 and in sub-case (ii) 𝑙 = 𝑓 (𝑆). Let Γ1 = Γ \ 𝑥 . We shall prove the following judgment:

G(Γ1 \ 𝑧);Θ ⊢ A𝑘rec 𝑦̃

(
𝑃
)
𝑔 ⊲ ⋄ (31)

We use some auxiliary sub-trees:

RVar

G(Γ) · 𝑋 : Θ;Θ ⊢ 𝑋 ⊲ ⋄ (32)

(32)

PolyVar

G(Γ) · 𝑋 : Θ; G(Δ, 𝑢𝑙 : 𝑆 ′,Δ𝑧) ⊢ 𝑦′𝜎1 ⊲ 𝑁
′

PolySend

G(Γ) · 𝑋 : Θ;Θ,G(Δ1) ⊢ 𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

(33)
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Here, in typing the right-hand assumption, we may notice that in sub-case (i) G(𝑢𝑖 : 𝑆) = 𝑢𝑖 :?(G(𝐶𝑧)); end,G(𝑆 ′) and G(𝑢𝑖𝜎 : 𝑆 ′) =
𝑢𝑖+1 : G(𝑆 ′) where 𝑢𝑖+1 = (𝑢𝑖+1, . . . , 𝑢𝑖+|G(𝑆′) |) and by definition 𝑢𝑖+1 ⊆ 𝑦′𝜎1. So right-hand side follows by Def. 4.12 and Lem. C.1.

Otherwise, in sub-case (ii) by Def. 4.4 and Def. 12 we know G(𝑢𝑖 : 𝑆) = G(𝑢𝑖𝜎 : 𝑆 ′).

(33) (29)

PolyRcv

G(Γ \ 𝑧) · 𝑋 : Θ;Θ,G(Δ, 𝑢𝑖 : 𝑆) ⊢ 𝑢𝑙 ?(𝑧̃) .𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

(34)

(34)

PolyVar

G(Γ \ 𝑧) · 𝑋 : Θ; G(Δ, 𝑟 : 𝑆) ⊢ 𝑦 ⊲ 𝑁
PolyRcv

G(Γ1 \ 𝑧) · 𝑋 : Θ;Θ ⊢ 𝑐𝑟
𝑘

?(𝑦).𝑢𝑙 ?(𝑧̃).𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

Rec

G(Γ1 \ 𝑧);Θ ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦) .𝑢𝑙 ?(𝑧̃) .𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 ⊲ ⋄

(35)

We may notice that by Def. 4.4 and Def. 12 we have G(Δ1) = G(Δ), 𝑢𝑖 : G(𝑆),G(Δ𝑧) So, in sub-case (i) as 𝑢𝑖 = 𝑢𝑙 we have

G(Δ1) (𝑢𝑙 ) =?(G(𝐶𝑧)); end. In sub-case (ii), by Lem. C.5 and as 𝑢𝑙 = 𝑢𝑓 (𝑆) we know G(Δ1) (𝑢𝑙 ) = 𝜇t.?(G(𝐶𝑧)); t. The following tree
proves this case:

(35) (28)

Par

G(Γ1 \ 𝑧);Θ ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦) .𝑢𝑙 ?(𝑧̃) .𝑐𝑟𝑘+1
!⟨𝑦′𝜎1⟩.𝑋 | A𝑘+1

rec 𝑦̃′𝜎1

(
𝑃 ′𝜎

)
𝑔

(36)

Note that we have used the following for the right assumption of (36):

A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
≡𝛼 A𝑘+1

rec 𝑦̃′𝜎1

(
𝑃 ′𝜎

)
(4) Case 𝑃 = 𝑄1 | 𝑄2. The only rule that can be applied here is Par:

Γ · 𝑋 : Δ𝜇 ;Δ1 ⊢ 𝑄1 ⊲ ⋄ Γ · 𝑋 : Δ𝜇 ;Δ2 ⊢ 𝑄2 ⊲ ⋄
Par

Γ · 𝑋 : Δ𝜇 ;Δ1,Δ2 ⊢ 𝑄1 | 𝑄2 ⊲ ⋄
(37)

Here we assume frv(𝑄1). So, by IH on the first and second assumption of (37) we have:

G(Γ \ 𝑥1);Θ1 ⊢ A𝑘rec 𝑦̃1

(
𝑄1

)
𝑔 ⊲ ⋄ (38)

G(Γ \ 𝑥1);Θ2 ⊢ A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
∅ ⊲ ⋄ (39)

where for 𝑖 ∈ {1, 2} we have 𝑥𝑖 ⊆ fn(𝑄𝑖 ) such that Δ𝑖 \ 𝑥 = ∅, and 𝑦𝑖 = 𝑣̃𝑖 ·𝑚𝑖 where 𝑣̃𝑖 is such that indexedΓ,Δ𝑖
(𝑣̃1, 𝑥𝑖 ) and

𝑚𝑖 = codom(𝑔𝑖 ). Further, Θ𝑖 = Θ𝑖
𝜇 · Θ𝑋 (𝑔𝑖 ) where

dom(Θ1

𝜇 ) = {𝑐𝑟
𝑘+1

, 𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑄1 ⌉∗ } ∪ {𝑐𝑟

𝑘+2
, . . . , 𝑐𝑟

𝑘+⌊𝑄1 ⌉∗ }

dom(Θ2

𝜇 ) = {𝑐𝑟
𝑘+𝑙+1

, 𝑐𝑟
𝑘+𝑙+2

, . . . , 𝑐𝑟
𝑘+𝑙+⌊𝑄2 ⌉∗ }

and Θ1

𝜇 (𝑐𝑟𝑘+1
) = 𝜇t.?(𝑁 1); t and Θ2

𝜇 (𝑐𝑟𝑘+𝑙+1
) = ⟨𝑁 2⟩ with 𝑁 𝑖 = (G(Γ),G(Δ𝜇 · Δ𝑖 )) (𝑦𝑖 ). Let Δ = Δ1 · Δ2. We define 𝑥 = 𝑥1 · 𝑥2 and

𝑦 = 𝑦1 · 𝑦2. By construction 𝑥 ⊆ fn(𝑃) and (Δ1 · Δ2) \ 𝑥 = ∅. Further, we may notice that 𝑦 = 𝑣̃ ·𝑚 where 𝑚 = codom(𝑔) and
indexedΓ,Δ (𝑣̃, 𝑥). We shall prove the following judgment:

G(Γ \ 𝑥);Θ ⊢ A𝑘rec 𝑦̃

(
𝑃
)
𝑔 ⊲ ⋄ (40)

where Θ = Θ1 · Θ2 · Θ′
with

Θ′ = 𝑐𝑟
𝑘

: 𝜇t.?(𝑁 ); t · 𝑐𝑟
𝑘+1

: 𝜇t.!⟨𝑁1⟩; t
By Tab. 3 we have:

A𝑘rec 𝑦̃

(
𝑃
)
𝑔 = 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑦).(𝑐𝑟

𝑘+1
!⟨𝑦1⟩.𝑋 | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑦2⟩) | A𝑘+1

rec 𝑦̃1

(
𝑄1

)
𝑔 | A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
∅

We use some auxiliary sub-trees:

Nil

G(Γ \ 𝑥) · 𝑋 : Θ′ ⊢ 0 ⊲ ⋄
PolyVar

G(Γ \ 𝑥) · 𝑋 : Θ′
;𝑦2 : 𝑁2 ⊢ 𝑦2 ⊲ 𝑁2

Snd

G(Γ \ 𝑥) · 𝑋 : Θ′
; ·𝑦2 : 𝑁2 ⊢ 𝑐𝑟

𝑘+𝑙+1
!⟨𝑦2⟩

(41)

Rvar

G(Γ \ 𝑥) · 𝑋 : Θ′
;Θ′ ⊢ 𝑋 ⊲ ⋄

PolyVar

G(Γ \ 𝑥) · 𝑋 : Θ′
;𝑦1 : 𝑁1 ⊢ 𝑦1 ⊲ 𝑁

Snd

G(Γ \ 𝑥) · 𝑋 : Θ′
;Θ′ · 𝑦1 : 𝑁1 ⊢ 𝑐𝑟

𝑘+1
!⟨𝑦1⟩.𝑋 ⊲ ⋄ (41)

Par

G(Γ \ 𝑥) · 𝑋 : Θ′
;Θ′ · 𝑦 : 𝑁 ⊢ 𝑐𝑟

𝑘+1
!⟨𝑦1⟩.𝑋 | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑦2⟩. ⊲ ⋄

(42)
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(42)

PolyVar

G(Γ \ 𝑥) · 𝑋 : Θ′
;𝑦 : 𝑁 ⊢ 𝑦 ⊲ 𝑁

Rv

G(Γ \ 𝑥) · 𝑋 : Θ′
;Θ′ ⊢ 𝑐𝑟

𝑘
?(𝑦).(𝑐𝑟

𝑘+1
!⟨𝑦1⟩.𝑋 | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑦2⟩) ⊲ ⋄

Rec

G(Γ \ 𝑥);Θ′ ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦).(𝑐𝑟
𝑘+1

!⟨𝑦1⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑦2⟩) ⊲ ⋄

(43)

The following tree proves this case:

(43)

(38) (39)

Par

G(Γ \ 𝑥);Θ ⊢ A𝑘+1

rec 𝑦̃1

(
𝑄1

)
𝑔1

| A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
𝑔2

⊲ ⋄
Par

G(Γ \ 𝑥);Θ1 · Θ2 ⊢ 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦).(𝑐𝑟
𝑘+1

!⟨𝑦1⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑦2⟩) | A𝑘+1

rec 𝑦̃1

(
𝑄1

)
𝑔 | A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
∅ ⊲ ⋄

(5) Case 𝑃 = (𝜈 𝑠 : 𝐶)𝑃 ′. We distinguish two sub-cases: (i) 𝐶 = 𝑆 and (ii) 𝐶 = ⟨𝐶 ′⟩. We only consider sub-case (i) as the other is similar.

First, we 𝛼-convert 𝑃 as follows:

𝑃 ≡𝛼 (𝜈 𝑠1 : 𝐶)𝑃 ′{𝑠1𝑠1/𝑠𝑠}

The only can that can be applied is ResS:

Γ;Δ𝜇 · Δ · 𝑠1 : 𝑆 · 𝑠1 : 𝑆 ⊢ 𝑃 ′{𝑠1𝑠1/𝑠𝑠} ⊲ ⋄
ResS

Γ;Δ𝜇 · Δ ⊢ (𝜈 𝑠1 : 𝑆)𝑃 ′{𝑠1𝑠1/𝑠𝑠} ⊲ ⋄
(44)

By IH on the assumption of (44) we have:

G(Γ \ 𝑥);Θ′ ⊢ A𝑘rec 𝑦̃′
(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
𝑔 ⊲ ⋄ (45)

where 𝑥 ′ ⊆ fn(𝑃) such that (Δ · 𝑠1 : 𝑆 · 𝑠1 : 𝑆) \ 𝑥 ′ = ∅, and 𝑦′ = 𝑣̃ ′ ∪𝑚 where indexedΓ,Δ ·𝑠1:𝑆 ·𝑠1:𝑆
(𝑣̃ ′, 𝑥 ′). Also, Θ′ = Θ′

𝜇 ,Θ𝑋 where

Θ′
𝜇 such that balanced(Θ′

𝜇 ) with

dom(Θ′
𝜇 ) = {𝑐𝑟

𝑘+1
, 𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗+1

} ∪ {𝑐𝑟
𝑘+2

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗+1

}

and Θ′
𝜇 (𝑐𝑟𝑘+1

) = 𝜇t.?(𝑁 ′); t where 𝑁 ′ = (G(Γ),G(Δ𝜇 · Δ · 𝑠1 : 𝑆 · 𝑠1 : 𝑆)) (𝑦′).
We define 𝑥 = 𝑥 ′ \ (𝑠1, 𝑠1) and 𝑦 = 𝑦′ \ (̃𝑠 · 𝑠̃) where 𝑠̃ = bn(𝑠1 : 𝑆) and 𝑠̃ = bn(𝑠1 : 𝑆). By construction 𝑥 ⊆ fn(𝑃) and Δ \ 𝑥 = ∅.
Further, 𝑦 = 𝑣̃ ·𝑚 where indexedΓ,Δ (𝑣̃, 𝑥).
Let Θ = Θ′,Θ′′

𝜇 where

Θ′′
𝜇 = 𝑐𝑟

𝑘
: 𝜇t.?(𝑁 ); t, 𝑐𝑟

𝑘+1
: 𝜇t.!⟨𝑁 ′⟩; t

where 𝑁 = (G(Γ),G(Δ𝜇 · Δ · 𝑢𝑖 : 𝑆)) (𝑦). By construction and since ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 we have

dom(Θ𝜇 ) = {𝑐𝑟
𝑘
, 𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

} ∪ {𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ⌉∗−1

}

By Tab. 3 we have:

A𝑘rec 𝑦̃

(
𝑃
)
𝑔 = 𝜇𝑋 .(𝜈 𝑠̃ : G(𝐶))𝑐𝑘?(𝑦) .𝑐𝑘+1

!⟨𝑦′⟩.𝑋 | A𝑘rec 𝑦̃′
(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
𝑔

We shall prove the following judgment:

G(Γ \ 𝑥);Θ ⊢ A𝑘rec 𝑦̃

(
𝑃
)
𝑔 ⊲ ⋄ (46)

We use some auxiliary sub-tree:

Rvar

G(Γ) · 𝑋 : Θ𝜇 ;Θ′′
𝜇 ⊢ 𝑋 ⊲ ⋄

PolyVar

G(Γ) · 𝑋 : Θ′′
𝜇 ; G(Δ), 𝑠̃ : G(𝑆), 𝑠̃ : G(𝑆) ⊢ 𝑦′ ⊲ 𝑁 ′

PolySend

G(Γ) · 𝑋 : Θ𝜇 ;Θ𝜇 · G(Δ), 𝑠̃ : G(𝑆), 𝑠̃ : G(𝑆) ⊢ 𝑐𝑘+1
!⟨𝑦′⟩.𝑋 ⊲ ⋄

(47)

The following tree proves this case:
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(47)

PolyVar

G(Γ); G(Δ) ⊢ 𝑦 ⊲ 𝑁
PolyRcv

G(Γ \ 𝑥) · 𝑋 : Θ′′
𝜇 ;Θ′′

𝜇 · 𝑠̃ : G(𝑆), 𝑠̃ : G(𝑆) ⊢ 𝑐𝑘?(𝑦).𝑐𝑘+1
!⟨𝑦′⟩.𝑋 ⊲ ⋄

PolyResS

G(Γ \ 𝑥) · 𝑋 : Θ′′
𝜇 ;Θ′′

𝜇 ⊢ (𝜈 𝑠̃ : G(𝑆))𝑐𝑘?(𝑦).𝑐𝑘+1
!⟨𝑦′⟩.𝑋 ⊲ ⋄

Rec

G(Γ \ 𝑥);Θ′′
𝜇 ⊢ 𝜇𝑋 .(𝜈 𝑠̃ : G(𝑆))𝑐𝑘?(𝑦).𝑐𝑘+1

!⟨𝑦′⟩.𝑋 ⊲ ⋄ (45)

Par

G(Γ \ 𝑥);Θ ⊢ 𝜇𝑋 .(𝜈 𝑠̃ : G(𝑆))𝑐𝑘?(𝑦) .𝑐𝑘+1
!⟨𝑦′⟩.𝑋 | A𝑘

rec 𝑦̃′
(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
𝑔 ⊲ ⋄

This concludes the proof.

□

Theorem 3 (Typability of Breakdown). Let 𝑃 be an initialized process. If Γ;Δ ⊢ 𝑃 ⊲ ⋄ then

H∗ (Γ \ 𝑥);H∗ (Δ \ 𝑥),Θ ⊢ A𝑘
𝑦̃

(
𝑃
)
⊲ ⋄ (𝑘 > 0)

where 𝑥 ⊆ fn(𝑃) and 𝑦 such that indexedΓ,Δ (𝑦, 𝑥). Also, balanced(Θ) with
dom(Θ) = {𝑐𝑘 , 𝑐𝑘+1

, . . . , 𝑐𝑘+|𝑃 |−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+|𝑃 |−1
}

and Θ(𝑐𝑘 ) =?(𝑀); end, where𝑀 = (H∗ (Γ),H∗ (Δ)) (𝑦).

Proof. By induction on the structure of 𝑃 . By assumption Γ;Δ ⊢ 𝑃 ⊲ ⋄ . In total we consider nine cases. We separately treat Input and
Output cases depending on whether a subject name of the prefix is recursive.

(1) Case 𝑃 = 0. The only rule that can be applied here is Nil. By inversion of this rule, we have: Γ; ∅ ⊢ 0. We shall then prove the following

judgment:

G(Γ);Θ ⊢ B𝑘
𝑦̃

(
0
)
⊲ ⋄ (48)

where 𝑥 ⊆ fn(0) = 𝜖 and Θ = {𝑐𝑘 :?(⟨end⟩); end}. Since by Rem. 1 we know that 𝑐𝑘?().0 stands for 𝑐𝑘?(𝑦) .0 with 𝑐𝑘 :?(⟨end⟩); end.
By Tab. 3: B𝑘

𝜖

(
0
)
= 𝑐𝑘?().0.

The following tree proves this case:

Nil

Γ′; ∅; ∅ ⊢ 0 ⊲ ⋄ 𝑐𝑘 ∉ dom(Γ)
End

Γ′; ∅; 𝑐𝑘 : end ⊢ 0 ⊲ ⋄
Sh

Γ′; ∅ ⊢ 𝑦 ⊲ ⟨end⟩
Rcv

G(Γ), 𝑦 : ⟨end⟩;Θ ⊢ 𝑐𝑘?().0 ⊲ ⋄
where Γ′ = G(Γ), 𝑦 : ⟨end⟩. We know 𝑐𝑘 ∉ dom(Γ) since we use reserved names for propagators channels.

(2) Case 𝑃 = 𝑢𝑖?(𝑧) .𝑃 ′. We distinguish two sub-cases, depending on whether 𝑢𝑖 is linear or not: (i) 𝑢𝑖 ∈ dom(Δ) and (ii) 𝑢𝑖 ∈ dom(Γ). We

consider sub-case (i) first. For this case Rule Rcv can be applied:

Γ;Δ, 𝑢𝑖 : 𝑆,Δ𝑧 ⊢ 𝑃 ′ ⊲ ⋄ Γ;Δ𝑧 ⊢ 𝑧 ⊲𝐶
Rcv

Γ \ 𝑧;Δ, 𝑢𝑖 :?(𝐶); 𝑆 ⊢ 𝑢𝑖?(𝑧) .𝑃 ′ ⊲ ⋄
(49)

By IH on the first assumption of (49) we know:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (50)

where 𝑥 ′ ⊆ fn(𝑃 ′) and 𝑦′ such that indexedΓ,Δ (𝑦′, 𝑥 ′). Also, Γ′1 = Γ \ 𝑥 ′, Δ′
1
= Δ \ 𝑥 ′, and balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀 ′); end where𝑀 ′ = (G(Γ),G(Δ, 𝑢𝑖 : 𝑆,Δ𝑧)) (𝑦′).

By applying Lem. C.2 to the second assumption of (49) we have:

G(Γ); G(Δ𝑧) ⊢ 𝑧̃ ⊲ G(𝐶) (51)

Let 𝑥 = 𝑥 ′, 𝑢 \ 𝑧 and 𝑦 = 𝑦′𝜎,𝑢𝑖 \ 𝑧̃ such that |𝑧̃ | = G(𝐶) where 𝜎 = {𝑛/𝑢} with 𝑛 = (𝑢𝑖+1, . . . , 𝑢𝑖+|G(𝑆) |) and 𝑢 = (𝑢𝑖 , . . . , 𝑢𝑖+|G(𝑆) |−1
).

We may notice that by Def. 4.12 indexedΓ,Δ (𝑦, 𝑥) holds. We define Θ = Θ1,Θ
′
, where

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀 ′⟩; end

with𝑀 = (G(Γ),G(Δ, , 𝑢𝑖 :?(𝐶); 𝑆)) (𝑦). By Def. 4.5, ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 so

dom(Θ) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
}
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and Θ is balanced since Θ(𝑐𝑘+1
) dual Θ(𝑐𝑘+1

) and Θ1 is balanced. By Tab. 3:

B𝑘
𝑦̃

(
𝑢𝑖?(𝑧).𝑃 ′

)
= 𝑐𝑘?(𝑦).𝑢𝑖?(𝑧̃).𝑐𝑘+1

!⟨𝑦′𝜎⟩.0 | B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
Also, let Γ1 = Γ \ 𝑥 and Δ1 = Δ \ 𝑥 . We may notice that Δ1 = Δ′

1
. We shall prove the following judgment:

G(Γ1 \ 𝑧); G(Δ1),Θ ⊢ B𝑘
𝑦̃

(
𝑢𝑖?(𝑧).𝑃 ′

)
We type sub-process 𝑐𝑘?(𝑦) .𝑢𝑖?(𝑧̃) .𝑐𝑘+1

!⟨𝑦′⟩.0 with some auxiliary derivations:

Nil

G(Γ); ∅ ⊢ 0 ⊲ ⋄
End

G(Γ); 𝑐𝑘+1
: end ⊢ 0 ⊲ ⋄

(52)

(52)

PolyVar

G(Γ); G(Δ \ Δ1, 𝑢𝑖+1 : 𝑆),G(Δ𝑧) ⊢ 𝑦′𝜎 ⊲𝑀 ′
PolySend

G(Γ); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end,G(Δ \ Δ1, 𝑢𝑖+1 : 𝑆),G(Δ𝑧) ⊢

𝑐𝑘+1
!⟨𝑦′𝜎⟩.0 ⊲ ⋄

End

G(Γ); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end, 𝑢𝑖 : end,G(Δ \ Δ1, 𝑢𝑖+1 : 𝑆),G(Δ𝑧) ⊢

𝑐𝑘+1
!⟨𝑦′𝜎⟩.0 ⊲ ⋄

(53)

(53) (51)

PolyRcv

G(Γ \ 𝑧);𝑢𝑖 :?(G(𝑈 )); end, 𝑐𝑘+1
:!⟨𝑀 ′⟩; end,G(Δ2) ⊢

𝑢𝑖?(𝑧̃).𝑐𝑘+1
!⟨𝑦′𝜎⟩.0 ⊲ ⋄

End

G(Γ \ 𝑧); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end, 𝑐𝑘 : end,G(Δ2) ⊢

𝑢𝑖?(𝑧̃).𝑐𝑘+1
!⟨𝑦′𝜎⟩.0 ⊲ ⋄

(54)

(54)

PolyVar

G(Γ \ 𝑧); G(Δ2) ⊢ 𝑦 ⊲𝑀
PolyRcv

G(Γ1 \ 𝑧);Θ′ ⊢ 𝑐𝑘?(𝑦).𝑢𝑖?(𝑧).𝑐𝑘+1
!⟨𝑦′𝜎⟩.0 ⊲ ⋄

(55)

where Δ2 = Δ, 𝑢𝑖 :?(𝐶); 𝑆 \ Δ1. Using (55), the following tree proves this case:

(55)

(50)

G(Γ′
1
\ 𝑧); G(Δ1),Θ1 ⊢

B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
⊲ ⋄

Par

G(Γ1\𝑧); G(Δ1),Θ ⊢
𝑐𝑘?(𝑦) .𝑢𝑖?(𝑧̃) .𝑐𝑘+1

!⟨𝑦′𝜎⟩.0 | B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
⊲ ⋄

(56)

Note that we have used the following for the right assumption of (56):

B𝑘+1

𝑦̃′
(
𝑃 ′
)
≡𝛼 B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
Next, we comment the case when 𝑢𝑖 ∉ 𝑥 . In this case Δ1 = Δ \ 𝑥,𝑢𝑖 :?(𝐶); 𝑆 . Hence, in the right hand-side of (56) instead of G(Δ1) we
would have G(Δ \ 𝑥,𝑢𝑖+1 : 𝑆) and in the left-hand side we have 𝑢𝑖 :?(G(𝐶)); end as a linear environment. Then, we would need to

apply (C.1) with {𝑢𝑖/𝑢𝑖+1} to right-hand side before invoking (50). We remark that similar provisos apply to the following cases when

the assumption is 𝑢𝑖 ∉ 𝑥 .

This concludes sub-case (i). We now consider sub-case (ii), i.e., 𝑢𝑖 ∈ dom(Γ). Here Rule Acc can be applied:

Γ; ∅ ⊢ 𝑢𝑖 ⊲ ⟨𝐶⟩ Γ;Δ, 𝑧 : 𝐶 ⊢ 𝑃 ′ ⊲ ⋄ Γ; 𝑧 : 𝐶 ⊢ 𝑧 ⊲𝐶
Acc

Γ;Δ ⊢ 𝑢𝑖?(𝑧).𝑃 ′ ⊲ ⋄
(57)

By IH on the second assumption of (57) we have:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (58)

where 𝑥 ′ and 𝑦′ are as in sub-case (i). Also, Γ′
1
= Γ \ 𝑥 ′ and Δ′

1
= Δ \ 𝑦′ and balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀 ′); end where𝑀 ′ = (G(Γ),G(Δ, 𝑧 : 𝐶)) (𝑦′).

By applying Lem. C.2 to the first and third assumptions of (57) we have:

G(Γ); ∅ ⊢ 𝑢𝑖 ⊲ ⟨G(𝐶)⟩ (59)

G(Γ); G(𝑧 : 𝐶) ⊢ 𝑧̃ ⊲ G(𝐶) (60)
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We define 𝑥 = 𝑥 ′ ∪ 𝑢 \ 𝑧 and 𝑦 = 𝑦′ ∪ 𝑢𝑖 \ 𝑧̃ where |𝑧̃ | = |G(𝐶) |. Notice that indexedΓ,Δ (𝑦, 𝑥). Let Γ1 = Γ \ 𝑥 . We define Θ = Θ1,Θ
′
,

where

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀 ′⟩; end

with𝑀 = (G(Γ),G(Δ)) (𝑦). By Def. 4.5, ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 so

dom(Θ) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
}

and Θ is balanced since Θ(𝑐𝑘+1
) dual Θ(𝑐𝑘+1

) and Θ1 is balanced.

By Tab. 3, we have:

B𝑘
𝑦̃

(
𝑢𝑖?(𝑧) .𝑃 ′

)
= 𝑐𝑘?(𝑦).𝑢𝑖?(𝑧).𝑐𝑘+1

!⟨𝑦′⟩.0 | B𝑘+1

𝑦̃′
(
𝑃 ′
)

(61)

We shall prove the following judgment:

G(Γ1); G(Δ1),Θ ⊢ B𝑘
𝑦̃

(
𝑢𝑖?(𝑧).𝑃 ′

)
⊲ ⋄ (62)

To this end, we use some auxiliary derivations:

Nil

G(Γ); ∅; ∅ ⊢ 0 ⊲ ⋄
End

G(Γ); ∅; 𝑐𝑘+1
: end ⊢ 0 ⊲ ⋄

(63)

(63)

PolyVar

G(Γ); G(Δ2), 𝑧 : G(𝐶) ⊢ 𝑦′ ⊲𝑀 ′
PolySend

G(Γ); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end,G(Δ2), 𝑧 : G(𝐶) ⊢ 𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(64)

(59) (64) (60)

PolyAcc

G(Γ); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end,G(Δ2) ⊢ 𝑢𝑖?(𝑧).𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
End

G(Γ); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end, 𝑐𝑘 : end,G(Δ2) ⊢ 𝑢𝑖?(𝑧) .𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(65)

(65)

PolyVar

G(Γ); G(Δ2) ⊢ 𝑦 ⊲𝑀
PolyRcv

G(Γ1);Θ′ ⊢ 𝑐𝑘?(𝑦) .𝑢𝑖?(𝑧) .𝑐𝑘+1
!⟨𝑦′⟩.0 ⊲ ⋄

(66)

where Δ2 = Δ \ Δ1. Using (58) and (66), the following tree proves this sub-case:

(66) (58)

Par

G(Γ1); G(Δ1),Θ ⊢ 𝑐𝑘?(𝑦) .𝑢𝑖?(𝑧) .𝑐𝑘+1
!⟨𝑦′⟩.0 | B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄

(67)

Note that if 𝑢 ∉ fn(𝑃 ′) we need to apply Lem. C.4 with 𝑢𝑖 to the right assumption of (67) before applying (58). This concludes the

analysis of the input case.

(3) Case 𝑃 = 𝑢𝑖 !⟨𝑧 𝑗 ⟩.𝑃 ′. We distinguish two sub-cases: (i) 𝑢𝑖 ∈ dom(Δ) and (ii) 𝑢𝑖 ∈ dom(Γ). We consider sub-case (i) first. For this case

Rule Send can be applied:

Γ;Δ1, 𝑢𝑖 : 𝑆 ⊢ 𝑃 ′ ⊲ ⋄ Γ;Δ𝑧 ⊢ 𝑧 𝑗 ⊲𝐶 𝑢𝑖 : 𝑆 ∈ Δ
Send

Γ;Δ ⊢ 𝑢𝑖 !⟨𝑧 𝑗 ⟩.𝑃 ′ ⊲ ⋄
(68)

where Δ = Δ1,Δ𝑧 , 𝑢𝑖 :!⟨𝐶⟩; 𝑆 .
By IH on the first assumption of (68) we have:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (69)

where 𝑥 ′ ⊆ fv(𝑃 ′) and 𝑦′ such that indexedΓ,Δ1,𝑢𝑖 :𝑆 (𝑦′, 𝑥 ′). Also, Γ′1 = Γ \ 𝑦′, Δ′
1
= Δ1 \ 𝑦′, and balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀1); end where𝑀1 = (G(Γ),G(Δ1, 𝑢𝑖 : 𝑆)) (𝑦′).

By Lem. C.2 and the first assumption of (68) we have:

G(Γ); G(Δ𝑧) ⊢ 𝑧̃ ⊲ G(𝐶) (70)

where 𝑧̃ = (𝑧 𝑗 , . . . , 𝑧 𝑗+|G(𝐶) |−1
). We assume 𝑥 = 𝑥 ′, 𝑢, 𝑧. Since 𝑥 ′ ⊆ fn(𝑃 ′) follows that 𝑥 ⊆ fn(𝑃). Let 𝑦 = 𝑦′𝜎,𝑢𝑖 , 𝑧̃ where 𝜎 = {𝑛/𝑢}

with 𝑛 = (𝑢𝑖+1, . . . , 𝑢𝑖+|G(𝑆) |) and 𝑢 = (𝑢𝑖 , . . . , 𝑢𝑖+|G(𝑆) |−1
). We have 𝑧̃ = fnb(𝑧,𝑦). By Def. 4.12 follows that indexedΓ,Δ (𝑦, 𝑥). We

define Θ = Θ1,Θ
′
, where:

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀1⟩; end
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with𝑀 = (G(Γ),G(Δ)) (𝑦). By Def. 4.5, we know ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1, so

dom(Θ) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
}

and Θ is balanced since Θ(𝑐𝑘+1
) dual Θ(𝑐𝑘+1

) and Θ1 is balanced.

By Tab. 3, we have:

B𝑘
𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
= 𝑐𝑘?(𝑦).𝑢𝑖 !

〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′𝜎⟩.0 | B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
Let Γ1 = Γ \ 𝑥 = Γ′

1
and Δ \ 𝑥 = Δ′

1
.

We shall prove the following judgment:

G(Γ1); G(Δ′
1
),Θ ⊢ B𝑘

𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
⊲ ⋄ (71)

To type the sub-process 𝑐𝑘?(𝑦) .𝑢𝑖 !
〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 of B𝑘
𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
we use some auxiliary derivations:

Nil

G(Γ); ∅ ⊢ 0 ⊲ ⋄
End

G(Γ); 𝑐𝑘+1
: end ⊢ 0 ⊲ ⋄

(72)

(72)

PolyVar

G(Γ); G(Δ1, 𝑢𝑖+1 : 𝑆 \ Δ′
1
) ⊢ 𝑦′𝜎 ⊲𝑀1

PolySend

G(Γ); 𝑐𝑘+1
:!⟨𝑀1⟩; end,G(Δ1, 𝑢𝑖+1 : 𝑆 \ Δ′

1
) ⊢

𝑐𝑘+1
!⟨𝑦′𝜎⟩. ⊲ ⋄

End

G(Γ); 𝑐𝑘+1
:!⟨𝑀1⟩; end, 𝑢𝑖 : end,G(Δ1, 𝑢𝑖+1 : 𝑆 \ Δ′

1
) ⊢

𝑐𝑘+1
!⟨𝑦′𝜎⟩.0 ⊲ ⋄

(73)

(73) (70)

Send

G(Γ); G(Δ \ Δ′
1
), 𝑐𝑘+1

:!⟨𝑀1⟩; end ⊢
𝑢𝑖 !

〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
End

G(Γ); G(Δ \ Δ′
1
), 𝑐𝑘+1

:!⟨𝑀1⟩; end, 𝑐𝑘 : end ⊢
𝑢𝑖 !

〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄

(74)

(74)

PolyVar

G(Γ); G(Δ \ Δ′
1
) ⊢ 𝑦 : 𝑀

PolyRcv

G(Γ1);Θ′ ⊢
𝑐𝑘?(𝑦) .𝑢𝑖 !

〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄

(75)

Using (69) and (75), the following tree proves this case:

(75)

(69)

G(Γ1); G(Δ′
1
),Θ1 ⊢ B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
⊲ ⋄

Par

G(Γ1); G(Δ′
1
),Θ ⊢ B𝑘

𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
⊲ ⋄

(76)

Note that we have used the following for the right assumption of (56):

B𝑘+1

𝑦̃′
(
𝑃 ′
)
≡𝛼 B𝑘+1

𝑦̃′𝜎

(
𝑃 ′{𝑢𝑖+1/𝑢𝑖 }

)
We now consider sub-case (ii). For this sub-case Rule Req can be applied:

Γ; ∅ ⊢ 𝑢 ⊲ ⟨𝐶⟩ Γ;Δ1 ⊲ 𝑃
′ ⊲ ⋄ Γ;Δ𝑧 ⊢ 𝑧 ⊲𝐶

Req

Γ;Δ1,Δ𝑧 ⊢ 𝑢𝑖 !⟨𝑧⟩.𝑃 ′ ⊲ ⋄
(77)

Let 𝑥 ′ ⊆ fn(𝑃 ′) and 𝑦 such that indexedΓ,Δ1
(𝑦′, 𝑥 ′) . Further, let Γ′

1
= Γ \ 𝑥 ′ and Δ′

1
= Δ1 \ 𝑥 ′. Also, let Θ1 be environment defined as

in sub-case (i).

By IH on the second assumption of (77) we have:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (78)

By Lem. C.2 and the first and third assumptions of (77) we have:

G(Γ); ∅ ⊢ 𝑢𝑖 ⊲ G(⟨𝐶⟩) (79)

G(Γ); G(Δ𝑧) ⊢ 𝑧̃ ⊲ G(𝐶) (80)
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We define 𝑥 = 𝑥 ′ ∪ 𝑧 ∪𝑢 and 𝑦 = 𝑦′ ∪ 𝑧̃ ∪𝑢𝑖 where |𝑧̃ | = |G(𝐶) |. Notice that indexedΓ,Δ (𝑦, 𝑥). Let Γ1 = Γ \ 𝑥 = Γ′
1
\𝑢 and Δ \ 𝑥 = Δ′

1
.

By Tab. 3, we have:

B𝑘
𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
= 𝑐𝑘?(𝑦).𝑢𝑖 !

〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 | B𝑘+1

𝑦̃′
(
𝑃 ′
)

We shall prove the following judgment:

G(Γ1); G(Δ′
1
),Θ ⊢ B𝑘

𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
We use some auxiliary derivations:

Nil

G(Γ); ∅; ∅ ⊢ 0 ⊲ ⋄
End

G(Γ); ∅; 𝑐𝑘+1
: end ⊢ 0 ⊲ ⋄

PolyVar

G(Γ); G(Δ1 \ Δ′
1
) ⊢ 𝑦′ : 𝑀1

PolySend

G(Γ); G(Δ1 \ Δ′
1
), 𝑐𝑘+1

:!⟨𝑀1⟩; end ⊢ 𝑐𝑘+1
!⟨𝑦′⟩.0 ⊲ ⋄

(81)

(79) (81) (80)

PolyReq

G(Γ); G(Δ1 \ Δ′
1
), 𝑐𝑘+1

:!⟨𝑀1⟩; end, 𝑧̃ : G(𝐶) ⊢ 𝑢𝑖 !
〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(82)

(82)

PolyVar

G(Γ);Δ1 \ Δ′
1
, 𝑧̃ : G(𝐶) ⊢ 𝑦 ⊲𝑀

PolyRcv

G(Γ1);Θ′ ⊢ 𝑐𝑘?(𝑦) .𝑢𝑖 !
〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(83)

The following tree proves this case:

(83)

(78)

G(Γ1); G(Δ′
1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄

Par

G(Γ1); G(Δ′
1
),Θ ⊢ B𝑘

𝑦̃

(
𝑢𝑖 !⟨𝑧⟩.𝑃 ′

)
⊲ ⋄

(84)

We remark that if 𝑢𝑖 ∉ fn(𝑃 ′) we need to apply Lem. C.4 with 𝑢𝑖 to the right assumption of (84) before applying (78). This concludes

the analysis for the output case 𝑃 = 𝑢𝑖 !⟨𝑧⟩.𝑃 ′.
(4) Case 𝑃 = (𝜈 𝑠 : 𝐶)𝑃 ′. We distinguish two sub-cases: (i) 𝐶 = 𝑆 and (ii) 𝐶 = ⟨𝐶⟩. First, we 𝛼-convert 𝑃 as follows:

𝑃 ≡𝛼 (𝜈 𝑠1 : 𝐶)𝑃 ′{𝑠1𝑠1/𝑠𝑠}
We consider sub-case (i) first. For this case Rule ResS can be applied:

Γ;Δ, 𝑠1 : 𝑆, 𝑠1 : 𝑆 ⊢ 𝑃 ′{𝑠1𝑠1/𝑠𝑠} ⊲ ⋄
ResS

Γ;Δ ⊢ (𝜈 𝑠1 : 𝑆)𝑃 ′{𝑠1𝑠1/𝑠𝑠} ⊲ ⋄
(85)

By IH on the assumption of (85) we have:

G(Γ \ 𝑥); G(Δ \ 𝑥, 𝑠1 : 𝑆, 𝑠1 : 𝑆),Θ1 ⊢ B𝑘
𝑦̃

(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
⊲ ⋄ (86)

where 𝑥 ⊆ fn(𝑃 ′) such that 𝑠1, 𝑠1 ∉ 𝑥 and 𝑦 such that indexedΓ,Δ (𝑦, 𝑥). Also, balanced(Θ1) with
dom(Θ1) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ′⌉∗−1

} ∪ {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗−1

}

and Θ1 (𝑐𝑘 ) =?(𝑀); end with𝑀 = (G(Γ),G(Δ)) (𝑦).
Note that we take Θ = Θ1 since ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗. By Def. 4.1 and Def. 4.4 and (86), we know that:

G(Γ \ 𝑥); G(Δ \ 𝑥), 𝑠̃ : G(𝑆), 𝑠̃ : G(𝑆) ⊢ B𝑘
𝑦̃

(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
⊲ ⋄ (87)

where 𝑠̃ = (𝑠1, . . . , 𝑠 |G (𝑆) |) and 𝑠̃ = (𝑠1, . . . , 𝑠 |G (𝑆) |). By Tab. 3, we have:

B𝑘
𝑦̃

(
(𝜈 𝑠)𝑃 ′

)
= (𝜈 𝑠̃ : G(𝑆))B𝑘

𝑦̃

(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
The following tree proves this sub-case:

(87)

PolyResS

G(Γ \ 𝑥); G(Δ \ 𝑥) ⊢ (𝜈 𝑠̃ : G(𝑆))B𝑘
𝑦̃

(
𝑃 ′{𝑠1𝑠1/𝑠𝑠}

)
⊲ ⋄

(88)

We now consider sub-case (ii). Similarly to sub-case (i) we first 𝛼-convert 𝑃 as follows:

𝑃 ≡𝛼 (𝜈 𝑠1)𝑃 ′{𝑠1/𝑠}
For this sub-case Rule Res can be applied:

Γ, 𝑠1 : ⟨𝐶⟩;Δ ⊢ 𝑃 ′{𝑠1/𝑠} ⊲ ⋄
Res

Γ;Δ ⊢ (𝜈 𝑠1)𝑃 ′{𝑠1/𝑠} ⊲ ⋄
(89)
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By IH on the first assumption of (89) we have:

G(Γ \ 𝑥, 𝑠1 : ⟨𝐶⟩); G(Δ \ 𝑥),Θ1 ⊢ B𝑘
𝑦̃

(
𝑃 ′{𝑠1/𝑠}

)
⊲ ⋄ (90)

where 𝑥 ⊆ fn(𝑃 ′) such that 𝑠1 ∉ 𝑥 and 𝑦 such that indexedΓ,Δ (𝑦, 𝑥). Also, balanced(Θ1) with

dom(Θ1) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ′⌉∗−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗−1
}

and Θ1 (𝑐𝑘 ) =?(𝑀); end with𝑀 = (G(Γ),G(Δ)) (𝑦).
Here we also take Θ = Θ1 since ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗. We notice that by Def. 4.1 and Def. 4.4 and (90):

G(Γ \ 𝑥), 𝑠1 : G(⟨𝐶⟩); G(Δ \ 𝑥),Θ1 ⊢ B𝑘
𝑦̃

(
𝑃 ′{𝑠1/𝑠}

)
⊲ ⋄ (91)

By Tab. 3, we have:

B𝑘
𝑦̃

(
(𝜈 𝑠)𝑃 ′

)
= (𝜈 𝑠1 : G(⟨𝐶⟩))B𝑘

𝑦̃

(
𝑃 ′{𝑠1/𝑠}

)
The following tree proves this sub-case:

(91)

PolyRes

G(Γ \ 𝑥); G(Δ \ 𝑥),Θ ⊢ (𝜈 𝑠1 : G(⟨𝐶⟩))B𝑘
𝑦̃

(
𝑃 ′{𝑠1/𝑠}

)
⊲ ⋄

(92)

(5) Case 𝑃 = 𝑄 | 𝑅. For this case only Rule Par can be applied:

Γ;Δ1 ⊢ 𝑄 ⊲ ⋄ Γ;Δ2 ⊢ 𝑅 ⊲ ⋄
Par

Γ;Δ1,Δ2 ⊢ 𝑄 | 𝑅 ⊲ ⋄ (93)

By IH on the first assumption of (93) we have:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃1

(
𝑄
)
⊲ ⋄ (94)

where 𝑥1 ⊆ fn(𝑄) and 𝑦1 such that indexedΓ,Δ1
(𝑦1, 𝑥1). Also, Γ′

1
= Γ \ 𝑥1, Δ

′
1
= Δ1 \ 𝑥1, and balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑄 ⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑄 ⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀1); end with𝑀1 = (G(Γ),G(Δ1)) (𝑦1).

By IH on the second assumption of (93) we have:

G(Γ′
2
); G(Δ′

2
),Θ2 ⊢ B𝑘+𝑙+1

𝑦̃2

(
𝑅
)
⊲ ⋄ (95)

where 𝑥2 ⊆ fn(𝑅) and 𝑦2 such that indexedΓ,Δ2
(𝑦2, 𝑥2) and 𝑙 = |𝑄 |. Also, Γ′

2
= Γ \ 𝑥2, Δ

′
2
= Δ2 \ 𝑥2 and balanced(Θ2) with

dom(Θ2) = {𝑐𝑘+𝑙+1
, . . . , 𝑐𝑘+𝑙+⌊𝑅⌉∗ } ∪ {𝑐𝑘+𝑙+2

, . . . , 𝑐𝑘+𝑙+⌊𝑅⌉∗ }

and Θ2 (𝑐𝑘+𝑙+1
) =?(𝑀2); end with𝑀2 = (G(Γ),G(Δ2)) (𝑦2).

We define 𝑥 = 𝑥1 ∪ 𝑥2. We may notice that 𝑥 ⊆ fn(𝑃) since fn(𝑃) = fn(𝑄) ∪ fn(𝑅). Accordingly, we define 𝑦 = 𝑦1, 𝑦2. By definition,

indexedΓ,Δ1,Δ2
(𝑦, 𝑥) holds. Further, let𝑀 = (G(Γ),G(Δ1,Δ2)) (𝑦). We define Θ = Θ1,Θ2,Θ

′
where:

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀1⟩; end, 𝑐𝑘+𝑙+1

:!⟨𝑀2⟩; end

By construction Θ is balanced since Θ(𝑐𝑘+1
) dual Θ(𝑐𝑘+1

), Θ(𝑐𝑘+𝑙+1
) dual Θ(𝑐𝑘+𝑙+1

), and Θ1 and Θ2 are balanced.

By Tab. 3 we have:

B𝑘
𝑦̃

(
𝑄 | 𝑅

)
= 𝑐𝑘?(𝑦) .𝑐𝑘+1

!⟨𝑦1⟩.𝑐𝑘+𝑙+1
!⟨𝑦2⟩.0 | B𝑘+1

𝑦̃1

(
𝑄
)
| B𝑘+𝑙+1

𝑦̃2

(
𝑅
)

We may notice that 𝑦1 = fnb(𝑄,𝑦) and 𝑦2 = fnb(𝑅,𝑦) hold by the construction of 𝑦. Let Γ1 = Γ \ 𝑥 . We shall prove the following

judgment:

G(Γ1); G(Δ′
1
,Δ′

2
),Θ ⊢ 𝑐𝑘?(𝑦).𝑐𝑘+1

!⟨𝑦1⟩.𝑐𝑘+𝑙+1
!⟨𝑦2⟩.0 | B𝑘+1

𝑦̃1

(
𝑄
)
| B𝑘+𝑙+1

𝑦̃2

(
𝑅
)
⊲ ⋄

To type 𝑐𝑘?(𝑦) .𝑐𝑘+1
!⟨𝑦1⟩.𝑐𝑘+𝑙+1

!⟨𝑦2⟩.0, we use some auxiliary derivations:

Nil

G(Γ); ∅ ⊢ 0
End

G(Γ); 𝑐𝑘+𝑙+1
: end ⊢ 0

PolyVar

G(Γ); G(Δ2), ⊢ 𝑧̃ ⊲𝑀2

PolySend

G(Γ); G(Δ′
2
), 𝑐𝑘+𝑙+1

:!⟨𝑀2⟩; end ⊢ 𝑐𝑘+𝑙+1
!⟨̃𝑧⟩.0 ⊲ ⋄

End

G(Γ); G(Δ′
2
), 𝑐𝑘+𝑙+1

:!⟨𝑀2⟩; end, 𝑐𝑘+1
: end ⊢ 𝑐𝑘+𝑙+1

!⟨̃𝑧⟩.0 ⊲ ⋄

(96)
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(96)

PolyVar

G(Γ); G(Δ1) ⊢ 𝑦1 ⊲𝑀1

PolySend

G(Γ); G(Δ′
1
,Δ′

2
), 𝑐𝑘+1

:!⟨𝑀1⟩; end, 𝑐𝑘+𝑙+1
:!⟨𝑀2⟩; end ⊢

𝑐𝑘+1
!⟨𝑦1⟩.𝑐𝑘+𝑙+1

!⟨𝑦2⟩.0 ⊲ ⋄
End

G(Γ); G(Δ′
1
,Δ′

2
), 𝑐𝑘+1

:!⟨𝑀1⟩; end, 𝑐𝑘+𝑙+1
:!⟨𝑀2⟩; end, 𝑐𝑘 : end ⊢

𝑐𝑘+1
!⟨𝑦1⟩.𝑐𝑘+𝑙+1

!⟨𝑦2⟩.0 ⊲ ⋄

(97)

(97)

PolyVar

G(Γ); G(Δ′
1
,Δ′

2
) ⊢ 𝑥 ⊲𝑀

PolyRcv

G(Γ1);Θ′ ⊢ 𝑐𝑘?(𝑦) .𝑐𝑘+1
!⟨𝑦1⟩.𝑐𝑘+𝑙+1

!⟨𝑦2⟩.0 ⊲ ⋄
(98)

(94)

(Lem. C.3) with Γ′
1
\ Γ1

G(Γ1); G(Δ1),Θ1 ⊢ B𝑘+1

𝑦̃1

(
𝑄
)
⊲ ⋄

(99)

(95)

(Lem. C.3) with Γ′
2
\ Γ1

G(Γ1); G(Δ′
2
),Θ2 ⊢ B𝑘+𝑙+1

𝑦̃2

(
𝑅
)
⊲ ⋄

(100)

(99) (100)

Par

G(Γ1); G(Δ′
1
,Δ′

2
),Θ1,Θ2 ⊢ B𝑘+1

𝑦̃

(
𝑄
)
| B𝑘+𝑙+1

𝑧

(
𝑅
)
⊲ ⋄

(101)

The following tree proves this case:

(98) (101)

Par

G(Γ1); G(Δ′
1
,Δ′

2
),Θ ⊢

𝑐𝑘?(𝑦).𝑐𝑘+1
!⟨𝑦1⟩.𝑐𝑘+𝑙+1

!⟨𝑦2⟩.0 | B𝑘+1

𝑦̃1

(
𝑄
)
| B𝑘+𝑙+1

𝑦̃2

(
𝑅
)
⊲ ⋄

(6) Case 𝑃 = 𝜇𝑋 .𝑃 ′. The only rule that can be applied here is Rec:

Γ, 𝑋 : Δ;Δ ⊢ 𝑃 ′ ⊲ ⋄
Γ;Δ ⊢ 𝜇𝑋 .𝑃 ′

(102)

We remark that by (102) we know 𝑥 : 𝑆 ∈ Δ =⇒ tr(𝑆). Then, by applying Lem. C.6 on the assumption of (102) we have:

G(Γ \ 𝑥);Θ ⊢ A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
𝑔 ⊲ ⋄ (103)

We take 𝑥 ′ = fn(𝑃 ′), so we have Δ \ 𝑥 ′ = ∅. Further, 𝑦′ is such that indexedΓ,Δ (𝑦′, 𝑥 ′). Let Θ′ = Θ′
𝜇 ,Θ𝑋 (𝑔) with Θ𝑋 (𝑔) = 𝑐𝑟

𝑋
: ⟨𝑀 ′⟩

with𝑀 ′ = (G(Γ),G(Δ)) (𝑦′). Further, 𝑥 ′ ⊆ 𝑃 ′ and 𝑦′ such that Δ \ 𝑥 ′ = ∅ and indexedΓ,Δ (𝑦′, 𝑥 ′). Also, balanced(Θ′
𝜇 ) with

dom(Θ′
𝜇 ) = {𝑐𝑟

𝑘+1
, . . . , 𝑐𝑟

𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑟
𝑘+1

, . . . , 𝑐𝑟
𝑘+⌊𝑃 ′⌉∗ }

where Θ′
𝜇 (𝑐𝑘+1

) = 𝑐𝑘 :?(𝑀 ′); end.
Let 𝑙 = ⌊𝑃 ′⌉∗ and 𝑧̃ such that |𝑦′ | = |𝑧̃ |. Further, let 𝑥 ⊆ fn(𝑃) and 𝑦 = bn(𝑥 : 𝑆). By definition we have 𝑥 ⊆ 𝑥 ′. By Tab. 3, we have:

B𝑘
𝑦̃

(
𝑃
)
= (𝜈 𝑐𝑟𝑋 ) (𝑐𝑘?(𝑦).𝑐𝑟

𝑘+1
!⟨𝑦′⟩.𝜇𝑋 .𝑐𝑟𝑋 ?(𝑧̃).𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
𝑔)

Let Θ𝜇 = Θ′
𝜇 · Θ′′

𝜇 where:

Θ′′
𝜇 = 𝑐𝑟

𝑘
: 𝜇t.?(𝑀); t · 𝑐𝑟

𝑘+1
: 𝜇t.!⟨𝑀 ′⟩; t

We shall prove the following judgment:

G(Γ \ 𝑥); G(Δ \ 𝑥) · Δ𝜇 ⊢ B𝑘
𝑦̃

(
𝑃
)
⊲ ⋄ (104)

Let Θ′
𝑋
= 𝑐𝑟

𝑋
: 𝜇t.?(𝑀 ′); t · 𝑐𝑟

𝑋
: 𝜇t.!⟨𝑀 ′⟩; t. We use some auxiliary sub-trees:

RVar

G(Γ \ 𝑥), 𝑋 : Θ′′
;Θ′′ ⊢ 𝑋 ⊲ ⋄

PolyVar

G(Γ \ 𝑥), 𝑋 : Θ′′
; G(Δ) ⊢ 𝑧̃ ⊲𝑀

Send

G(Γ \ 𝑥), 𝑋 : Θ′′
; G(Δ),Θ′′ ⊢ 𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 ⊲ ⋄

(105)
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(105)

PolyVar

G(Γ \ 𝑥); G(Δ) ⊢ 𝑧̃ ⊲𝑀
PolyRcv

G(Γ \ 𝑥), 𝑋 : Θ′′
;Θ′′ ⊢ 𝑐𝑟

𝑋
?(𝑧̃).𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 ⊲ ⋄

Rec

G(Γ \ 𝑥);Θ′′ ⊢ 𝜇𝑋 .𝑐𝑟
𝑋

?(𝑧̃) .𝑐𝑟
𝑘+1

!⟨̃𝑧⟩.𝑋 ⊲ ⋄

(106)

where Θ′′ = 𝑐𝑟
𝑘+1

: 𝜇t.!⟨𝑀⟩; t, 𝑐𝑟
𝑋

: 𝜇t.?(𝑀); t.

(106)

PolyVar

G(Γ \ 𝑥); G(Δ) ⊢ 𝑦′ ⊲𝑀 ′
PolySend

G(Γ \ 𝑥); G(Δ), 𝑐𝑟
𝑘+1

: 𝜇t.!⟨𝑀⟩; t, 𝑐𝑟
𝑋

: 𝜇t.?(𝑀); t ⊢ 𝑐𝑟
𝑘+1

!⟨𝑦⟩.𝜇𝑋 .𝑐𝑟
𝑋

?(𝑧̃) .𝑐𝑟
𝑘+1

!⟨̃𝑧⟩.𝑋 ⊲ ⋄
(107)

(107)

PolyVar

G(Γ \ 𝑥);𝑦 : 𝑀 ⊢ 𝑦 ⊲𝑀
PolyRcv

G(Γ \ 𝑥); G(Δ \ 𝑥) · Θ′′
𝜇 · 𝑐𝑟

𝑋
: 𝜇t.?(𝑀); t ⊢ 𝑐𝑘?(𝑦) .𝑐𝑟

𝑘+1
!⟨𝑦′⟩.𝜇𝑋 .𝑐𝑟

𝑋
?(𝑧̃).𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 ⊲ ⋄

(108)

The following tree proves this case:

(108) (103)

Par

G(Γ \ 𝑥); G(Δ \ 𝑥) · Θ𝜇 · Θ′
𝑋
⊢ 𝑐𝑘?(𝑦) .𝑐𝑟

𝑘+1
!⟨𝑦′⟩.𝑋 𝜇𝑋 .𝑐𝑟

𝑋
?(𝑧̃).𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑦̃

(
𝑃 ′
)
⊲ ⋄

ResS

G(Γ \ 𝑥); G(Δ \ 𝑥) · Θ𝜇 ⊢ (𝜈 𝑐𝑟
𝑋
) (𝑐𝑘?(𝑦) .𝑐𝑟

𝑘+1
!⟨𝑦′⟩.𝑋 𝜇𝑋 .𝑐𝑟

𝑋
?(𝑧̃) .𝑐𝑟

𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑦̃′
(
𝑃 ′
)
) ⊲ ⋄

(109)

(7) Case 𝑃 = 𝑟 !⟨𝑧⟩.𝑃 ′ when tr(𝑟 ). For this case Rule Send can be applied:

Γ;Δ, 𝑟 : 𝑆 ′ ⊢ 𝑃 ′ ⊲ ⋄ Γ;Δ𝑧 ⊢ 𝑧 ⊲𝐶
Send

Γ;Δ, 𝑟 : 𝑆,Δ𝑧 ⊢ 𝑟 !⟨𝑧⟩.𝑃 ′ ⊲ ⋄
(110)

where 𝑆 =!⟨𝐶⟩; 𝑆 ′.
Then, by IH on the first assumption of (110) we have:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (111)

where 𝑥 ′ ⊆ fn(𝑃 ′) such that 𝑟 ∈ 𝑥 ′ and𝑦′ such that indexedΓ,Δ,𝑟 :𝑆 (𝑦′, 𝑥 ′). By this follows that (𝑟1, . . . , 𝑟 |G (𝑆) |) ⊆ 𝑦′. Also, Γ′
1
= Γ \𝑥 ′,

Δ′
1
= Δ \ 𝑦′, and balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀1); end where𝑀1 = (G(Γ),G(Δ, 𝑟 : 𝑆)) (𝑦′).

By applying Lem. C.2 on the assumption of (68) we have:

G(Γ); G(Δ𝑧) ⊢ 𝑧̃ ⊲ G(𝐶) (112)

We assume 𝑥 = 𝑥 ′, 𝑧. Since 𝑥 ′ ⊆ fn(𝑃 ′) follows that 𝑥 ⊆ fn(𝑃). Let 𝑦 = 𝑦′, 𝑧̃ where |𝑧̃ | = |G(𝐶) |. By Def. 4.12 follows that

indexedΓ,Δ,𝑟 :𝑆,Δ𝑧
(𝑦, 𝑥). We define Θ = Θ1,Θ

′
, where:

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀1⟩; end

with𝑀 = (G(Γ),G(Δ, 𝑟 : 𝑆,Δ𝑧)) (𝑦). By Def. 4.5, we know ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1, so

dom(Θ) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
}

and Θ is balanced since Θ(𝑐𝑘+1
) dual Θ(𝑐𝑘+1

) and Θ1 is balanced.

By Tab. 3, we have:

B𝑘
𝑦̃

(
𝑟 !⟨𝑧⟩.𝑃 ′

)
= 𝑐𝑘?(𝑦) .𝑟 𝑓 (𝑆) !

〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 | B𝑘+1

𝑦̃′
(
𝑃 ′
)

Let Γ1 = Γ \ 𝑥 = Γ′
1
and Δ \ 𝑥 = Δ′

1
.

We shall prove the following judgment:

G(Γ1); G(Δ′
1
),Θ ⊢ B𝑘

𝑦̃

(
𝑟 !⟨𝑧⟩.𝑃 ′

)
⊲ ⋄ (113)

Let Δ1 = Δ, 𝑟 : 𝑆,Δ𝑧 . To type the left-hand side component of B𝑘
𝑦̃

(
𝑟 !⟨𝑧⟩.𝑃 ′

)
we use some auxiliary derivations:

Nil

G(Γ); ∅ ⊢ 0 ⊲ ⋄
End

G(Γ); 𝑐𝑘+1
: end ⊢ 0 ⊲ ⋄

PolyVar

G(Γ); G(Δ, 𝑟 : 𝑆 \ Δ′
1
) ⊢ 𝑦′ ⊲𝑀1

PolySend

G(Γ); 𝑐𝑘+1
:!⟨𝑀1⟩; end,G(Δ, 𝑟 : 𝑆 \ Δ′

1
) ⊢ 𝑐𝑘+1

!⟨𝑦′⟩. ⊲ ⋄

(114)
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(114) (112)

PolySend

G(Γ); G(Δ1 \ Δ′
1
), 𝑐𝑘+1

:!⟨𝑀1⟩; end ⊢ 𝑟 𝑓 (𝑆) !
〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
End

G(Γ); G(Δ1 \ Δ′
1
), 𝑐𝑘+1

:!⟨𝑀1⟩; end, 𝑐𝑘 : end ⊢ 𝑟 𝑓 (𝑆) !
〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(115)

(115)

PolyVar

G(Γ); G(Δ1 \ Δ′
1
) ⊢ 𝑦 ⊲𝑀

PolyRcv

G(Γ1);Θ′ ⊢ 𝑐𝑘?(𝑦) .𝑟 𝑓 (𝑆) !
〈
𝑧̃
〉
.𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(116)

We may notice that by Def. 4.4 and Def. 12 we have G(Δ1 \ Δ′
1
) = G(Δ), 𝑟̃ : R★(𝑆),G(Δ𝑧) \ G(Δ′

1
). Further, by Lem. C.5 we know

G(Δ1) (𝑟 𝑓 (𝑆) ) = 𝜇t.!⟨G(𝐶)⟩; t.
The following tree proves this case:

(116)

(111)

G(Γ1); G(Δ′
1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄

Par

G(Γ1); G(Δ′
1
),Θ ⊢ B𝑘

𝑦̃

(
𝑟 !⟨𝑧⟩.𝑃 ′

)
⊲ ⋄

(117)

(8) Case 𝑃 = 𝑟?(𝑧) .𝑃 ′ when tr(𝑟 ). For this case Rule Rcv can be applied:

Γ;Δ, 𝑟 : 𝑆 ′,Δ𝑧 ⊢ 𝑃 ′ ⊲ ⋄ Γ;Δ𝑧 ⊢ 𝑧 ⊲𝐶
Rcv

Γ \ 𝑧;Δ, 𝑟 : 𝑆 ⊢ 𝑟?(𝑧) .𝑃 ′ ⊲ ⋄
(118)

where 𝑆 =?(𝐶); 𝑆 ′.
Then, by IH on the first assumption of (49) we know:

G(Γ′
1
); G(Δ′

1
),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄ (119)

where 𝑥 ′ ⊆ fn(𝑃 ′) such that 𝑟 ∈ 𝑥 ′ and 𝑦′ such that indexedΓ,Δ,𝑟 :𝑆 (𝑦′, 𝑥 ′). By this follows that (𝑟1, . . . , 𝑟 |G (𝑆) |) ⊆ 𝑦′.
Also, Γ′

1
= Γ \ 𝑥 ′, Δ′

1
= Δ \ 𝑥 ′, and balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀 ′); end where𝑀 ′ = (G(Γ),G(Δ, 𝑟 : 𝑆,Δ𝑧)) (𝑦′).

By applying Lem. C.2 to the second assumption of (49) we have:

G(Γ); G(Δ𝑧) ⊢ 𝑧 ⊲ G(𝐶) (120)

Let 𝑥 = 𝑥 ′ \ 𝑧 and 𝑦 = 𝑦′ \ 𝑧̃ such that |𝑧̃ | = G(𝐶) where. We may notice that by Def. 4.12 indexedΓ,Δ,𝑟 :𝑆 (𝑦, 𝑥) holds. We define

Θ = Θ1,Θ
′
, where

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀 ′⟩; end

with𝑀 = (G(Γ),G(Δ, , 𝑢𝑖 :?(𝐶); 𝑆)) (𝑦). By Def. 4.5, ⌊𝑃⌉∗ = ⌊𝑃 ′⌉∗ + 1 so

dom(Θ) = {𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
} ∪ {𝑐𝑘+1

, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
}

and Θ is balanced since Θ(𝑐𝑘+1
) dual Θ(𝑐𝑘+1

) and Θ1 is balanced. By Tab. 3:

B𝑘
𝑦̃

(
𝑟?(𝑧) .𝑃 ′

)
= 𝑐𝑘?(𝑦) .𝑟 𝑓 (𝑆)?(𝑧̃).𝑐𝑘+1

!⟨𝑦′⟩.0 | B𝑘+1

𝑦̃′
(
𝑃 ′
)

Also, let Γ1 = Γ \ 𝑥 and Δ1 = Δ \ 𝑥 . We may notice that Δ1 = Δ′
1
. We shall prove the following judgment:

G(Γ1 \ 𝑧); G(Δ1),Θ ⊢ B𝑘
𝑦̃

(
𝑟?(𝑧) .𝑃 ′

)
Let Δ1 = Δ, 𝑟 : 𝑆 . The left-hand side component of B𝑘

𝑦̃

(
𝑟?(𝑧).𝑃 ′

)
is typed using some auxiliary derivations:

Nil

G(Γ); ∅ ⊢ 0 ⊲ ⋄
End

G(Γ); 𝑐𝑘+1
: end ⊢ 0 ⊲ ⋄

PolyVar

G(Γ); G(Δ \ Δ1) ⊢ 𝑦′ ⊲𝑀 ′
PolySend

G(Γ); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end,G(Δ \ Δ1) ⊢ 𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄

(121)

(121) (120)

Rcv

G(Γ \ 𝑧); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end,G(Δ2) ⊢ 𝑟 𝑓 (𝑆)?(𝑧̃) .𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
End

G(Γ \ 𝑧); 𝑐𝑘+1
:!⟨𝑀 ′⟩; end, 𝑐𝑘 : end,G(Δ2) ⊢ 𝑟 𝑓 (𝑆)?(𝑧̃).𝑐𝑘+1

!⟨𝑦′⟩.0 ⊲ ⋄
(122)
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(122)

PolyVar

G(Γ \ 𝑧); G(Δ2) ⊢ 𝑦 ⊲𝑀
PolyRcv

G(Γ1 \ 𝑧);Θ′ ⊢ 𝑐𝑘?(𝑦) .𝑟 𝑓 (𝑆)?(𝑧) .𝑐𝑘+1
!⟨𝑦′⟩.0 ⊲ ⋄

(123)

where Δ2 = Δ, 𝑟 : 𝑆 \ Δ1. We may notice that by Def. 4.4 and Def. 12 we have G(Δ2) = G(Δ), 𝑟̃ : R★(𝑆) \ G(Δ1). Further, by Lem. C.5

we know G(Δ2) (𝑟 𝑓 (𝑆) ) = 𝜇t.?(G(𝐶)); t.
The following tree proves this case:

(123)

(119)

G(Γ′
1
\ 𝑧); G(Δ1),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄

Par

G(Γ1\𝑧); G(Δ1),Θ ⊢ 𝑐𝑘?(𝑦).𝑟 𝑓 (𝑆)?(𝑧̃) .𝑐𝑘+1
!⟨𝑦′⟩.0 | B𝑘+1

𝑦̃′
(
𝑃 ′
)
⊲ ⋄

(124)

(9) Case 𝑃 = (𝜈 𝑠 : 𝜇t.𝑆)𝑃 ′. For this case Rule ResS can be applied:

Γ;Δ, 𝑠 : 𝜇t.𝑆, 𝑠 : 𝜇t.𝑆 ⊢ 𝑃 ′
ResS

Γ;Δ ⊢ (𝜈 𝑠 : 𝜇t.𝑆)𝑃 ′
(125)

By IH on the assumption of (125) we have:

G(Γ \ 𝑥 ′); G(Δ \ 𝑥 ′),Θ1 ⊢ B𝑘+1

𝑦̃′
(
𝑃 ′
)

(126)

where we take 𝑦′ such that 𝑠̃, 𝑠̃ ⊆ 𝑦′ with 𝑠̃ = (𝑠1, . . . , 𝑠 |R (𝑆) |) and 𝑠̃ = (𝑠1, . . . , 𝑠 |R (𝑆) |). . Accordingly, 𝑥 ′ is such that 𝑠, 𝑠 ⊆ 𝑥 ′. Since
lin(𝑠) and lin(𝑠) we know 𝑥 ′ ⊆ fn(𝑃 ′). Also, indexedΓ,Δ1

(𝑦′, 𝑥 ′) where Δ1 = Δ, 𝑠 : 𝜇t.𝑆, 𝑠 : 𝜇t.𝑆 . Also, balanced(Θ1) with

dom(Θ1) = {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ } ∪ {𝑐𝑘+2

, . . . , 𝑐𝑘+⌊𝑃 ′⌉∗ }

and Θ1 (𝑐𝑘+1
) =?(𝑀 ′); end where𝑀 = (G(Γ),G(Δ)) (𝑦′).

Let 𝑦 = 𝑦′ \ (̃𝑠, 𝑠̃) and 𝑥 = 𝑥 ′ \ (𝑠, 𝑠). Since 𝑠, 𝑠 ∉ fn(𝑃) we know 𝑥 ⊆ fn(𝑃) and indexedΓ,Δ (𝑦, 𝑥).
We define Θ = Θ1,Θ

′
where

Θ′ = 𝑐𝑘 :?(𝑀); end, 𝑐𝑘+1
:!⟨𝑀 ′⟩; end

By Tab. 3, we have:

B𝑘
𝑦̃

(
𝑃
)
= (𝜈 𝑠̃ : R(𝑆)) (𝑐𝑘?(𝑦) .𝑐𝑘+1

!⟨𝑦′⟩.0 | B𝑘
𝑦̃′
(
𝑃 ′
)
)

We should prove the following judgment:

G(Γ \ 𝑥); G(Δ \ 𝑥),Θ ⊢ B𝑘
𝑦̃

(
𝑃
)
⊲ ⋄

We use some auxiliary sub-tree:

Nil

G(Γ); ∅ ⊢ 0 ⊲ ⋄
PolyVar

G(Γ); G(Δ1 ∩ 𝑥 ′) ⊢ 𝑦′ ⊲𝑀 ′
PolySend

G(Γ); G(Δ ∩ 𝑥), 𝑠̃ : R(𝑆), 𝑠̃ : R(𝑆) ⊢ 𝑐𝑘+1
!⟨𝑦′⟩.0 ⊲ ⋄

(127)

here we may notice that

G(Δ ∩ 𝑥), 𝑠̃ : R(𝑆), 𝑠̃ : R(𝑆) = G(Δ1 ∩ 𝑥 ′)

The following tree proves this case:

(127)

PolyVar

G(Γ); G(Δ ∩ 𝑥) ⊢ 𝑦 ⊲𝑀
PolyRcv

G(Γ \ 𝑥);Θ′, 𝑠̃ : R(𝑆), 𝑠̃ : R(𝑆) ⊢ 𝑐𝑘?(𝑦) .𝑐𝑘+1
!⟨𝑦′⟩.0 ⊲ ⋄ (126)

Par

G(Γ \ 𝑥); G(Δ \ 𝑥),Θ, 𝑠̃ : R(𝑆), 𝑠̃ : R(𝑆) ⊢ 𝑐𝑘?(𝑦).𝑐𝑘+1
!⟨𝑦′⟩.0 | B𝑘

𝑦̃′
(
𝑃 ′
)
⊲ ⋄

PolyResS

G(Γ \ 𝑥); G(Δ \ 𝑥),Θ ⊢ (𝜈 𝑠̃ : R(𝑆)) (𝑐𝑘?(𝑦).𝑐𝑘+1
!⟨𝑦′⟩.0 | B𝑘

𝑦̃′
(
𝑃 ′
)
) ⊲ ⋄

(128)

□
□
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C.5 Proof of Thm. 4 (Minimality Result, Optimized)
Theorem 4 (Minimality Result for 𝜋 , Optimized). Let 𝑃 be a 𝜋 process with𝑢 = fn(𝑃). If Γ;Δ ⊢ 𝑃 ⊲⋄ thenH∗ (Γ𝜎);H∗ (Δ𝜎) ⊢ F ∗ (𝑃) ⊲⋄,

where 𝜎 = {init(𝑢)/𝑢}.

Proof. By assumption, Γ;Δ ⊢ 𝑃 ⊲ ⋄. Then by applying Lem. C.1 we have:

Γ𝜎 ;Δ𝜎 ⊢ 𝑃𝜎 ⊲ ⋄ (129)

By Def. 4.8, we shall prove the following judgment:

G(Γ𝜎); G(Δ𝜎) ⊢ (𝜈 𝑐̃) (𝑐𝑘 !⟨̃𝑟 ⟩.0 | B𝑘
𝑟

(
𝑃𝜎

)
) ⊲ ⋄ (130)

where 𝑐̃ = (𝑐𝑘 , . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1
); 𝑘 > 0; and 𝑟̃ =

⋃
𝑣∈𝑣̃{𝑣1, . . . , 𝑣 |G (𝑆) |} with 𝑣 : 𝑆 . Since 𝑣̃ ⊆ fn(𝑃) we know indexedΓ𝜎,Δ𝜎 (𝑟̃ , 𝑣̃). Since 𝑃𝜎 is an

initialized process, we apply Thm. 3 to (129) to get:

G(Γ𝜎); G(Δ𝜎 \ 𝑣̃),Θ ⊢ B𝑘
𝑟

(
𝑃𝜎

)
⊲ ⋄ (131)

where Θ is balanced with dom(Θ) = {𝑐𝑘 , 𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1

} ∪ {𝑐𝑘+1
, . . . , 𝑐𝑘+⌊𝑃 ⌉∗−1

} and Θ(𝑐𝑘 ) =?(𝑀); end with𝑀 = G(Δ) (𝑟̃ ).
The following tree proves this case:

Nil

G(Γ𝜎); ∅ ⊢ 0 ⊲ ⋄
End

G(Γ𝜎); 𝑐𝑘 : end ⊢ 0 ⊲ ⋄
PolyVar

G(Γ𝜎); 𝑟̃ : 𝑀 ⊢ 𝑟̃ ⊲𝑀
Send

G(Γ𝜎); 𝑐𝑘 :!⟨𝑀⟩; end, 𝑟̃ : 𝑀 ⊢ 𝑐𝑘 !⟨̃𝑟 ⟩.0 ⊲ ⋄ (131)

Par

G(Γ𝜎); G(Δ𝜎), 𝑐𝑘 :!⟨𝑀⟩; end,Θ ⊢ 𝑐𝑘 !⟨̃𝑟 ⟩.0 | B𝑘
𝑟

(
𝑃𝜎

)
⊲ ⋄

ResS

G(Γ𝜎); G(Δ𝜎) ⊢ (𝜈 𝑐̃) (𝑐𝑘 !⟨̃𝑟 ⟩.0 | B𝑘
𝑟

(
𝑃𝜎

)
) ⊲ ⋄

□

C.6 MST Bisimilarity
Now, we are ready to relate processes, modulo indexed names (Def. 4.13), using the relation ⋄ defined as follows:

Definition C.1 (⋄ Indexed process relation). We define the relation ⋄ as
[IPSnd]

𝑃𝜎 ⋄ 𝑃 ′ 𝑣𝜎 ⊲⊳c 𝑣̃ 𝜎 = next(𝑛𝑖 )
𝑛𝑖 !⟨𝑣⟩.𝑃 ⋄𝑛𝑖 !⟨̃𝑣⟩.𝑃 ′

[IPInact]

0 ⋄ 0

[IPRcv]

𝑃𝜎 ⋄ 𝑃 ′ 𝑣𝜎 ⊲⊳c 𝑣̃ 𝜎 = next(𝑛𝑖 )
𝑛𝑖?(𝑦).𝑃 ⋄𝑛𝑖?(𝑦) .𝑃 ′

[IPNews]

𝑃 ⋄ 𝑃 ′ 𝑚̃1 ⊲⊳c 𝑚̃2

(𝜈 𝑚̃1)𝑃 ⋄ (𝜈 𝑚̃2)𝑃 ′

Definition C.2 (Minimal characteristic processes).

⟨?(𝐶); 𝑆⟩𝑢𝑖
def
= 𝑢𝑖?(𝑥).(𝑡 !⟨𝑢𝑖+1, . . . , 𝑢𝑖+|G(𝑆) |⟩.0 | ⟨𝐶⟩𝑥𝑖 )

⟨!⟨𝐶⟩; 𝑆⟩𝑢𝑖
def
= 𝑢𝑖 !⟨⟨𝐶⟩c⟩.𝑡 !⟨𝑢𝑖+1, . . . , 𝑢𝑖+|G(𝑆) |⟩.0

⟨end⟩𝑢𝑖
def
= 0

⟨⟨𝐶⟩⟩𝑢𝑖
def
= 𝑢1!⟨⟨𝐶⟩c⟩.𝑡 !⟨𝑢1⟩.0

⟨𝜇t.𝑆⟩𝑢𝑖
def
= ⟨𝑆{end/t}⟩𝑢𝑖

⟨𝑆⟩c
def
= 𝑠̃ ( |̃𝑠 | = |G(𝑆) |, 𝑠̃ fresh)

⟨⟨𝐶⟩⟩c
def
= 𝑎1 (𝑎1 fresh)

Definition C.3 (Trigger Collections). We let 𝐻,𝐻 ′
to range over trigger collections: processes of the form 𝑃1 | · · · | 𝑃𝑛 (with 𝑛 ≥ 1), where

each 𝑃𝑖 is a trigger process or a process that originates from a trigger process.

Example C.4. Let 𝐻1 = 𝑡 ⇐C 𝑣 :𝐶 | [(𝐶)]𝑢1 | 𝑡2!⟨𝑢2⟩.0 where 𝑣, 𝑡1, 𝑡2, 𝑢1, 𝑢2 are channel names, 𝐶 a channel type. We could see that, [(𝐶)]𝑢1

and 𝑡2!⟨𝑢2⟩.0 originates from a trigger process. Thus, 𝐻1 is a trigger collection.

Definition C.5 (Process in parallel with a trigger or a characteristic process). We write 𝑃 ∥ 𝑄 to stand for 𝑃 | 𝑄 where either 𝑃 or 𝑄 is a

trigger collection.
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𝑃 C𝑢̃
𝑥̃

(
𝑃
)

𝑄1 ∥ 𝑄2
{𝑅1 ∥ 𝑅2 : 𝑅1 ∈ C𝑢̃1

𝑦̃

(
𝑄1

)
, 𝑅2 ∈ C𝑢̃2

𝑧

(
𝑄2

)
} 𝑦 = fnb(𝑄1, 𝑥), 𝑧̃ = fnb(𝑄2, 𝑥)

{𝑢̃/𝑥̃} = {𝑢̃1/𝑦̃} · {𝑢̃2/𝑧}

(𝜈 𝑠 : 𝐶)𝑄 {(𝜈 𝑠̃ : G(𝐶)) 𝑅 : C𝑢̃
𝑥̃

(
𝑄𝜎

)
} 𝑠̃ = (𝑠1, . . . , 𝑠 |G (𝐶) |)

𝜎 = {𝑠1𝑠1/𝑠𝑠}

𝑄 {(𝜈 𝑐̃)𝑅 : 𝑅 = 𝑐𝑘 !⟨𝑢⟩ | B𝑘
𝑥̃

(
𝑄
)
} ∪ {(𝜈 𝑐̃)𝑅 : 𝑅 ∈ J 𝑢̃

𝑥̃

(
𝑄
)
} 𝑐̃ = fpn(𝑅)

0 {0}

𝑃 J 𝑢̃
𝑥̃

(
𝑃
)

𝑛𝑖?(𝑦) .𝑄
{𝑛𝑙𝜌?(𝑦).𝑐𝑘+1

!⟨̃𝑧𝜌⟩ | B𝑘+1

𝑧

(
𝑄𝜎

)
}

𝑦 : 𝑆 ∧ 𝑦 = (𝑦1, . . . , 𝑦 |𝑆 |)
𝑤 = (lin(𝑛𝑖 )) ? {𝑛𝑖 }: 𝜖
𝑧̃ = fnb(𝑄, 𝑥𝑦 \𝑤)
𝜌 = {𝑢̃/𝑥̃}
𝜎 = next(𝑛𝑖 ) · {𝑦1/𝑦}
𝑙 = (tr(𝑆)) ? 𝑓 (𝑆): 𝑖

𝑛𝑖 !⟨𝑦 𝑗 ⟩.𝑄 {𝑛𝑙𝜌!

〈
𝑦𝜌

〉
.𝑐𝑘+1

!⟨̃𝑧𝜌⟩ | B𝑘+1

𝑧

(
𝑄𝜎

)
}

𝑦 : 𝑆 ∧ 𝑦 = (𝑦 𝑗 , . . . , 𝑦 𝑗+|G(𝑆) |−1
)

𝑤 = (lin(𝑛𝑖 )) ? {𝑛𝑖 }: 𝜖
𝑧̃ = fnb(𝑄, 𝑥 \𝑤)
𝜌 = {𝑢̃/𝑥̃}
𝜎 = next(𝑛𝑖 )
𝑙 = (tr(𝑆)) ? 𝑓 (𝑆): 𝑖

𝑄1 | 𝑄2

{𝑐𝑘 !⟨𝑦𝜌⟩.𝑐𝑘+𝑙 !⟨̃𝑧𝜌⟩ | B𝑘
𝑦̃

(
𝑄1

)
| B𝑘+𝑙

𝑧

(
𝑄2

)
}

∪
{(𝑅1 | 𝑅2) : C𝑢̃1

𝑦̃

(
𝑄1

)
, 𝑅2 ∈ C𝑢̃2

𝑧

(
𝑄2

)
}

𝑦 = fnb(𝑄1, 𝑥)
𝑧̃ = fnb(𝑄2, 𝑥)
𝜌 = {𝑢̃/𝑥̃}
𝑙 = ⌊𝑄1⌉∗

𝜇𝑋 .𝑃
{𝑐𝑟
𝑘+1

!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟
𝑋

?(𝑦) .𝑐𝑟
𝑘+1

!⟨𝑦⟩.𝑋 |
A𝑘+1

rec 𝑥̃

(
𝑃
)
𝑔}

𝑛 = fn(𝑃)
𝑛 : 𝐶 ∧𝑚 = bn(𝑛 : 𝐶)
𝑧̃ = 𝑥 ∪𝑚, |𝑧̃ | = |𝑦 |
𝑔 = {𝑋 ↦→𝑚}

0 {0}

Table 4: The definition of C𝑢̃
𝑥̃

(
𝑃
)
and J 𝑢̃

𝑥̃

(
𝑃
)
(core fragment).

Definition C.6 (Propagators of 𝑃 ). We define fpn(𝑃) to denote the set of free propagator names in 𝑃 .

Definition C.7 (Depth of recursive variable). Let 𝑃 be a recursive process. We define recd(𝑃) to count sequential prefixes in 𝑃 preceding

recursive variable 𝑋 or a subprocess of shape 𝜇𝑋 .𝑄 . Function recd(𝑃) and recd′(𝑃) are mutually defined as follows:

recd(𝑃) =
{
recd′(𝑃) if frv(𝑃)
0 otherwise

recd′(𝑃) =


recd(𝑄) + 1 if 𝑃 = 𝛼.𝑄

recd(𝑄) + recd(𝑅) if 𝑃 = 𝑄 | 𝑅
0 if 𝑃 = 𝜇𝑋 .𝑄 or 𝑃 = 𝑋

recd(𝑄) if 𝑃 = (𝜈 𝑠)𝑄

Definition C.8 (Name breakdown). Let 𝑢𝑖 : 𝐶 be an indexed name with its session type. We write bn(𝑢𝑖 : 𝐶) to denote

bn(𝑢𝑖 : 𝐶) = (𝑢𝑖 , . . . , 𝑢𝑖+|G(𝐶) |−1
)

Function bn(·) is extended to work on a list element-wise, as follows:

bn((𝑢1

𝑖 , . . . , 𝑢
𝑛
𝑗 ) : (𝐶1, . . . ,𝐶𝑛)) = bn(𝑢1

𝑖 : 𝐶1) · . . . · bn(𝑢𝑛𝑗 : 𝐶𝑛)

41



Alen Arslanagić, Anda-Amelia Palamariuc, and Jorge A. Pérez

𝑃 C𝑢̃
𝑥̃

(
𝑃
)

𝑄

C𝑢̃
rec 𝑥̃

(
𝜇𝑋 .𝑄∗)𝑑

if 𝑄 ≡ 𝛼𝑑 .𝛼𝑑−1
. . . . .𝛼𝑑−𝑝 .(𝑃𝑋 | 𝑅) and 𝜇𝑋 .𝑄∗

is a subprocess of 𝑃𝑋

{(𝜈 𝑐̃)𝑅 : 𝑅 ∈ {𝑐𝑘 !⟨𝑢⟩ | B𝑘
𝑥̃

(
𝑄
)
, 𝑐𝑟
𝑘

!⟨𝑢⟩ | A𝑘
rec 𝑥̃

(
𝑄
)
}}

∪ {(𝜈 𝑐̃)𝑅 : 𝑅 ∈ J 𝑢̃
𝑥̃

(
𝑄
)
∪ J𝑘

rec 𝑥̃,𝜌

(
𝑄
)𝑑
∅} otherwise

𝑐̃ = fpn(𝑅)
𝜌 = {𝑢̃/𝑥̃}

C𝑢̃
rec 𝑥̃

(
𝑄
)𝑑

{(𝜈 𝑐̃) (𝜇𝑋 .𝑐𝑟
𝑋

?(𝑦).𝑐𝑟
𝑘+1

!⟨𝑦⟩.𝑋 | 𝑅 | 𝑐𝑟
𝑘

?(𝑥).𝑐𝑟
𝑋

!⟨𝑥⟩.𝑋 : 𝑅 ∈ J𝑘
rec 𝑥̃

(
𝑄
)𝑑
𝑔 } ∪𝑁

where:

𝑀 =


{(𝜈 𝑐̃) (𝜇𝑋 .𝑐𝑟

𝑋
?(𝑦) .𝑐𝑟

𝑘+1
!⟨𝑦⟩.𝑋 | 𝑅 |

𝑐𝑟
𝑋

!⟨𝑥𝜌⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).𝑐𝑟
𝑋

!⟨𝑥⟩.𝑋 ) : 𝑅 ∈ J𝑘
rec 𝑥̃

(
𝑄
)
0

𝑔} if 𝑔 ≠ ∅
{(𝜈 𝑐̃) (𝜇𝑋 .𝑐𝑟

𝑋
?().𝑐𝑟

𝑘+1
!⟨⟩.𝑋 | 𝑅 |

𝑐𝑟
𝑋

!⟨⟩ | 𝜇𝑋 .𝑐𝑟
𝑘

?().(𝑐𝑟
𝑋

!⟨⟩ | 𝑋 )) : 𝑅 ∈ J𝑘
rec 𝑥̃

(
𝑄
)
0

𝑔} otherwise

𝑁 =

{
{(𝜈 𝑐̃) (𝑐𝑟

𝑘
!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟

𝑋
?(𝑦) .𝑐𝑟

𝑘
!⟨𝑦⟩.𝑋 | A𝑘

rec 𝑥̃

(
𝑄
)
𝑔)} ∪ 𝑀 if 𝑑 = 0

∅ otherwise

𝑐̃ = fpn(𝑅)
𝑄 ≡ 𝜇𝑋 .𝑄∗

𝑥 = fs(𝑄∗)
𝑔 = {𝑋 ↦→ 𝑥}
𝜌 = {𝑢̃/𝑥̃}

𝑃 J𝑘
rec 𝑥̃,𝜌

(
𝑃
)𝑑
𝑔 when 𝑔 ≠ ∅

𝑛𝑖 !⟨𝑦 𝑗 ⟩.𝑄

{𝑛𝑙 !⟨𝑦𝜌⟩.𝑐𝑟𝑘+1
!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥) .𝑛𝑙 !⟨𝑦⟩.𝑐𝑟𝑘+1

!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔} if recd(𝑄) = 𝑑

𝑁 ∪ {𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥) .𝑛𝑙 !⟨𝑦⟩.𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | 𝑅 : 𝑅 ∈ J𝑘+1

rec 𝑧,𝜌

(
𝑄𝜎

)𝑑
𝑔 } otherwise

where:

𝑁 =

{
{𝑐𝑟
𝑘+1

!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).𝑛𝑙 !⟨𝑦⟩.𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔} if recd(𝑄) = 𝑑 + 1

∅ otherwise

𝑦 : 𝑇 ∧(𝑦 𝑗 , . . . , 𝑦 𝑗+|G(𝑇 ) |−1
)

𝑤 = (lin(𝑢𝑖 )) ? {𝑢𝑖 }: 𝜖
𝑧̃ = 𝑔(𝑋 ) ∪ fnb(𝑄, 𝑥 \𝑤)
𝑙 = (tr(𝑢𝑖 )) ? 𝑓 (𝑆): 𝑖
𝜎 = next(𝑢𝑖 )

𝑛𝑖?(𝑦) .𝑄

{𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1
!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥).𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1

!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔} if recd(𝑄) = 𝑑

𝑁 ∪ {𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥) .𝑛𝑙 ?(𝑦) .𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | 𝑅 : 𝑅 ∈ J𝑘+1

rec 𝑧,𝜌

(
𝑄𝜎

)𝑑
𝑔 }

𝑁 =

{
{𝑐𝑟
𝑘+1

!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔} if recd(𝑄) = 𝑑 + 1

∅ otherwise

𝑤 = (lin(𝑢𝑖 )) ? {𝑢𝑖 }: 𝜖
𝑧̃ = 𝑔(𝑋 ) ∪ fnb(𝑄, 𝑥𝑦 \𝑤)
𝑙 = (tr(𝑢𝑖 )) ? 𝑓 (𝑆): 𝑖
𝜎 = next(𝑢𝑖 ) · {𝑦1/𝑦}

𝑄1 | 𝑄2

𝑁 ∪ {𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥) .(𝑐𝑟
𝑘+1

!⟨𝑦1⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑦2⟩) | 𝑅1 | 𝑅2 :

𝑅1 ∈ J𝑘+1

rec 𝑦̃1,𝜌

(
𝑄1

)𝑑
𝑔1

, 𝑅2 ∈ J𝑘+𝑙+1

rec 𝑦̃2,𝜌

(
𝑄2

)𝑑
𝑔2

}

𝑁 =


{𝑐𝑟
𝑘+1

!⟨𝑦1𝜌⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥) .(𝑐𝑟
𝑘+1

!⟨𝑦1⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑦2⟩) |
A𝑘+1

rec 𝑦̃1

(
𝑄1

)
𝑔1

| A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
𝑔2
} if recd(𝑄1) = 𝑑

∅ otherwise

frv(𝑄1)
𝑦1 = 𝑔(𝑋 ) ∪ fnb(𝑄1, 𝑥)
𝑦2 = fnb(𝑄2, 𝑥)
𝑙 = ⌊𝑄1⌉∗

(𝜈 𝑠 : 𝐶)𝑄

𝑁 ∪ {𝜇𝑋 .(𝜈 𝑠̃ : G(𝐶))𝑐𝑘?(𝑥) .𝑐𝑘+1
!⟨̃𝑧⟩.𝑋 | 𝑅 : 𝑅 ∈ J𝑘+1

rec 𝑧,𝜌

(
𝑄𝜎

)𝑑
𝑔 }

𝑅 = 𝑐𝑘+1
!⟨̃𝑧𝜌⟩.𝜇𝑋 .(𝜈 𝑠̃ : G(𝐶))𝑐𝑘?(𝑥).𝑐𝑘+1

!⟨̃𝑧⟩.𝑋

𝑁 =

{
{(𝜈 𝑠̃ : G(𝐶))𝑅 | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔} if recd(𝑄1) = 𝑑

∅ otherwise

𝑠̃ = (𝑠1, . . . , 𝑠 |G (𝑆) |)
𝑠̃ = (𝑠1, . . . , 𝑠 |G (𝑆) |)
𝑛 = (lin(𝑠)) ?𝑛: 𝜖

𝑧̃ = 𝑥, 𝑠̃, 𝑛

𝜎 = {𝑠1𝑠1/𝑠𝑠}
𝑋 0

𝑃 J𝑘
rec 𝑥̃,𝜌

(
𝑃
)𝑑
𝑔 when 𝑔 = ∅

𝑛𝑖 !⟨𝑦 𝑗 ⟩.𝑄 {𝑛𝑙 !⟨𝑦𝜌⟩.𝑐𝑟𝑘+1
!⟨̃𝑧𝜌⟩ | 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥).(𝑛𝑙 !⟨𝑦⟩.𝑐𝑟𝑘+1

!⟨̃𝑧⟩ | 𝑋 ) | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔}

𝑛𝑖?(𝑦) .𝑄 {𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1
!⟨̃𝑧𝜌⟩ | 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥) .(𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1

!⟨̃𝑧⟩ | 𝑋 ) | A𝑘+1

rec 𝑧

(
𝑄𝜎

)
𝑔}

𝑄1 | 𝑄2

{𝑐𝑟
𝑘+1

!⟨𝑦1𝜌⟩ | 𝑐𝑟𝑘+𝑙+1
!⟨𝑦2𝜌⟩ | 𝜇𝑋 .𝑐𝑟

𝑘
?(𝑥).(𝑐𝑟

𝑘+1
!⟨𝑦1⟩ | 𝑐𝑟𝑘+𝑙+1

!⟨𝑦2⟩ | 𝑋 ) |
A𝑘+1

rec 𝑦̃1

(
𝑄1

)
𝑔1

| A𝑘+𝑙+1

rec 𝑦̃2

(
𝑄2

)
𝑔2
}

(𝜈 𝑠 : 𝐶)𝑄 {𝑐𝑟
𝑘+1

!⟨̃𝑧𝜌⟩ | 𝜇𝑋 .(𝜈 𝑠̃ : G(𝐶))𝑐𝑘?(𝑥) .(𝑐𝑟
𝑘+1

!⟨̃𝑧⟩ | 𝑋 ) | A𝑘+1

rec 𝑧

(
𝑄
)
𝑔}

Table 5: The extension of C𝑢̃
𝑥̃

(
𝑃
)
and definition of J𝑘

rec 𝑥̃,𝜌

(
𝑃
)𝑑
𝑔 (recursion extension). Side conditions for last four rows (𝑔 = ∅)

are the same as for corresponding cases when 𝑔 ≠ ∅.
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Definition C.9 (Indexed names substitutions). Let
𝑢 = (𝑎, 𝑏, 𝑠, 𝑠, 𝑠 ′, 𝑠 ′, 𝑟 , 𝑟 ′, . . .)

be a finite tuple of names. We write index(𝑢) to denote

index(𝑢) = {{𝑎1, 𝑏1, 𝑠𝑖 , 𝑠𝑖 , 𝑠
′
𝑗
, 𝑠′𝑗 , 𝑟1, 𝑟

′
1
, . . ./𝑎,𝑏, 𝑠, 𝑠′, 𝑟 , 𝑟 ′, . . .} : 𝑖, 𝑗, . . . > 0}

Definition C.10 (Relation S ). Let 𝑃{𝑢̃/𝑥̃} be a well-typed process and let the C-set be as in Tab. 4. We define the relation S as follows:

S =
{
(𝑃{𝑢̃/𝑥̃}, 𝑅) : 𝑅 ∈ C𝑢∗

𝑥∗

(
𝑃𝜎

)
with 𝑛 = fn(𝑃) ∪ 𝑢 ∪ 𝑥, 𝜎 ∈ index(𝑛),

𝑢∗ = bn(𝑢𝜎 : 𝐶), 𝑥∗ = bn(𝑥𝜎 : 𝐶)
}

where 𝑢 : 𝐶 .

For the convenience, we define function Ĉ−
−
(
·
)
relying on C−

−
(
·
)
as follows:

Definition C.11 (Function Ĉ−
−
(
·
)
). Let 𝑃 be a process, 𝜌 be a name substitution, and 𝜎 be an indexed name substitution. We define Ĉ𝜌

𝜎

(
𝑃
)

as follows:

Ĉ𝜌
𝜎

(
𝑃1

)
= C𝑢∗

𝑥∗

(
𝑃𝜎

)
with 𝜌 = {𝑢̃/𝑥̃}, 𝑢∗ = bn(𝑢𝜎 : 𝐶), 𝑥∗ = bn(𝑥𝜎 : 𝐶)

where 𝑢 : 𝐶 .

C.7 Operational correspondence
Lemma C.12. Given an indexed process 𝑃1{𝑢̃/𝑥̃}, the set C𝑢̃

𝑥̃

(
𝑃1

)
is closed under 𝜏 transitions on non-essential prefixes. That is, if 𝑅1 ∈ C𝑢̃

𝑥̃

(
𝑃1

)
and 𝑅1

𝜏−→ 𝑅2 is inferred from the actions on non-essential prefixes, then 𝑅2 ∈ C𝑢̃
𝑥̃

(
𝑃1

)
.

Sketch. By the induction on the structure of 𝑃1 and the inspection of definition of C−
−
(
·
)
and J−

−
(
·
)
in Tab. 4 and Tab. 5. □

Lemma C.13. Relation ⋄ is a MST bisimulation.

Sketch. Straightforward by the transition induction and Def. C.1. □

Lemma C.7. Assume 𝑃1{𝑢̃/𝑥̃} is a well-formed process and 𝑃1{𝑢̃/𝑥̃} S𝑄1.

(1) Whenever 𝑃1{𝑢̃/𝑥̃}
(𝜈𝑚1)𝑛!⟨𝑣:𝐶1 ⟩−→ 𝑃2 then there exist 𝑄2 and 𝜎𝑣 such that 𝑄1

(𝜈𝑚2)𝑛̆!⟨𝑣̃:G(𝐶1) ⟩
=⇒ 𝑄2 where 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ and, for a fresh 𝑡 ,

(𝜈 𝑚1) (𝑃2 ∥ 𝑡 ⇐C 𝑣 :𝐶1) S (𝜈 𝑚2) (𝑄2 ∥ 𝑡 ⇐m 𝑣𝜎𝑣 :𝐶1)

(2) Whenever 𝑃1{𝑢̃/𝑥̃}
𝑛?(𝑣)
−→ 𝑃2 then there exist 𝑄2 and 𝜎𝑣 such that 𝑄1

𝑛̆?(𝑣̃)
=⇒𝑄2 where 𝑣𝜎𝑣 ⊲⊳ 𝑣̃ and 𝑃2 S 𝑄2,

(3) Whenever 𝑃1

𝜏−→𝑃2 then there exists 𝑄2 such that 𝑄1

𝜏
=⇒𝑄2 and 𝑃2 S 𝑄2.

Proof. By transition induction. Let 𝜌1 = {𝑢̃/𝑥̃}. By inversion of 𝑃1 S𝑄1 we know there is 𝜎1 ∈ index(fn(𝑃1) ∪ 𝑢 ∪ 𝑥), such that

𝑄1 ∈ Ĉ𝜌1

𝜎1

(
𝑃1

)
. Then, if 𝑃1

ℓ−→ 𝑃2 then we show there exists 𝑄2 such that 𝑄1

ℓ̆−→ 𝑄2 and 𝑄2 ∈ Ĉ𝜌2

𝜎2

(
𝑃2

)
for some 𝜌2, and for some 𝜎 ′

2
we

have 𝜎2 = 𝜎 ′
2
· 𝜎1 · {𝑛𝑖+1/𝑛𝑖 } with 𝑛𝑖 = subj(ℓ̆). First, we consider two base cases: Rules Snd and Rv. Then, we consider inductive cases:

Rules ParL and Tau. We omit inductive cases New and Res as they follow directly by the inductive hypothesis and the definition of restriction

case of C−
−
(
·
)
(Tab. 4). Finally, we separately treat cases when a process is recursive. We show two cases (Rv and ParL) emphasizing specifics

of the recursion breakdown.

(1) Case Snd. We distinguish two sub-cases: (i) 𝑃1 = 𝑛!⟨𝑣⟩.𝑃2 and (ii) 𝑃1 = 𝑛!⟨𝑦⟩.𝑃2 with {𝑣/𝑦} ∈ 𝜌1. In both sub-cases we know there is

𝜌2 = {𝑢̃2/𝑥̃2} such that

𝑃1𝜌1 = 𝑛𝜌1!⟨𝑣⟩.𝑃2𝜌2

We have the following transition:

⟨Snd⟩

𝑃1𝜌1

𝑛𝜌!⟨𝑣⟩
−→ 𝑃2𝜌2
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Let 𝜎1 = 𝜎 ′ · {𝑛𝑖/𝑛} where 𝜎 ′ ∈ index(fn(𝑃1) ∪ 𝑢 ∪ 𝑥) and 𝜎2 = 𝜎1 · 𝜎 where 𝜎 = next(𝑛𝑖 ). Here we take 𝜎𝑣 = 𝜎2. Further, let

𝑢∗ = bn(𝑢𝜎1 : 𝐶) and 𝑥∗ = bn(𝑥𝜎1 : 𝐶) with 𝑢 : 𝐶 . Also, let 𝑧̃ = fnb(𝑃2, 𝑥∗ \𝑤) where𝑤 = {𝑛𝑖 } if lin(𝑛𝑖 ) otherwise𝑤 = 𝜖 . Then, in

both sub-cases, there are two possibilities for the shape of 𝑄1, namely:

𝑄1

1
= (𝜈 𝑐̃𝑘 ) (𝑐𝑘 !⟨𝑢∗⟩ | B𝑘

𝑥∗

(
𝑃1𝜎1

)
)

𝑄2

1
= (𝜈 𝑐̃𝑘+1

)𝑛𝑖𝜌!⟨̃𝑣⟩.𝑐𝑘+1
!⟨̃𝑧𝜌⟩ | B𝑘+1

𝑧

(
𝑃2𝜎2

)
where 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ . By Lem. C.12 we know that 𝑄1

1

𝜏−→ 𝑄2

1
. Thus, we only consider how 𝑄2

1
evolves. We can infer the following:

𝑄2

1

𝑛𝑖𝜌!⟨𝑣̃⟩
−→ 𝑄2

where 𝑄2 = (𝜈 𝑐̃𝑘+1
)𝑐𝑘+1

!⟨̃𝑧𝜌⟩ | B𝑘+1

𝑧

(
𝑃2𝜎2

)
. Then, we should show the following:

(𝑃2 ∥ 𝑡 ⇐C 𝑣 :𝐶1)𝜌2 S 𝑄2 ∥ 𝑡 ⇐m 𝑣𝜎𝑣 :𝐶1 (132)

By Tab. 4 we can see that

𝑄2 ∈ C𝑧𝜌2

𝑧

(
𝑃2𝜎2

)
(133)

Here we remark that by construction 𝜎2 = 𝜎1 · {𝑛𝑖+1/𝑛𝑖 }.
By Def. 4.6 and Def. C.8 we know that

𝑧̃ = fnb(𝑃2, bn(𝑥 : 𝐶) \𝑤) = bn(𝑥2𝜎1 · 𝜎 : 𝐶2)

with 𝑥2 : 𝐶2. Similarly, we have

𝑧̃𝜌 = bn(𝑥2𝜌2𝜎1 · 𝜎 : 𝐶2)
Further, we know there is

𝜎 ′
2
∈ index(fn(𝑃2) ∪ 𝑢2 ∪ 𝑥2)

such that 𝑃2{𝑢̃2/𝑥̃2}𝜎2 = 𝑃2{𝑢̃2/𝑥̃2}𝜎 ′
2
. Thus, by this and (133) we have that 𝑃2𝜌2 S𝑄2. Next, by the definition we have 𝑡 ⇐C

𝑣 :𝐶1 S 𝑡 ⇐m 𝑣𝜌𝜎 :𝐶1. Thus, the goal (132) follows. This concludes Snd case.
(2) Case Rv. Here we know 𝑃1 = 𝑛?(𝑦).𝑃2. We know there is 𝜌2 = {𝑢̃2/𝑥̃2} such that

𝑃1𝜌1 = 𝑛𝜌1?(𝑦) .𝑃2𝜌2

The transition is as follows:

⟨Rv⟩

𝑛𝜌1?(𝑦) .𝑃2𝜌2

𝑛?(𝑣)
−→ 𝑃2𝜌2 · {𝑣/𝑦}

Let 𝜎1 = 𝜎 ′ · {𝑛𝑖/𝑛} where 𝜎 ′ ∈ index(fn(𝑃1) ∪ 𝑢 ∪ 𝑥) and 𝜎2 = 𝜎1 · 𝜎 where 𝜎 = next(𝑛𝑖 ) · {𝑦1/𝑦}. Further, let 𝑢∗ = bn(𝑢𝜎1 : 𝐶)
and 𝑥∗ = bn(𝑥𝜎1 : 𝐶) with 𝑢 : 𝐶 . Also, let 𝑦 = (𝑦1, . . . , 𝑦 |G (𝑆) |) and 𝑧̃ = fnb(𝑃2, 𝑥∗𝑦 \𝑤) where𝑤 = {𝑛𝑖 } if lin(𝑛𝑖 ) otherwise𝑤 = 𝜖 .

Then, there are two possibilities for the shape of 𝑄1, namely:

𝑄1

1
= (𝜈 𝑐̃𝑘 ) (𝑐𝑘 !⟨𝑢∗⟩ | B𝑘

𝑥∗

(
𝑃1𝜎1

)
)

𝑄2

1
= (𝜈 𝑐̃𝑘+1

)𝑛𝑖𝜌?(𝑦) .𝑐𝑘+1
!⟨̃𝑧𝜌⟩ | B𝑘+1

𝑧

(
𝑃2𝜎2

)
By Lem. C.12 we know that 𝑄1

1

𝜏−→ 𝑄2

1
. Thus, we only consider how 𝑄2

1
evolves. We can infer the following:

𝑄2

1

𝑛𝑖𝜌?⟨𝑣̃⟩
−→ 𝑄2

where 𝑄2 = (𝜈 𝑐̃𝑘+1
)𝑐𝑘+1

!⟨̃𝑧𝜌 · {𝑣̃/𝑦̃}⟩ | B𝑘+1

𝑧

(
𝑃2𝜎2

)
and 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ for some 𝜎𝑣 ∈ index(𝑣). Now, we should show the following:

𝑃2𝜌2 · {𝑣/𝑦} S𝑄2 (134)

By Tab. 4 we can see that

𝑄2 ∈ C𝑧𝜌2 ·{𝑣̃/𝑦̃ }
𝑧

(
𝑃2𝜎2 · 𝜎𝑣

)
(135)

Here we remark that 𝜎2 · 𝜎𝑣 = 𝜎𝑣 · 𝜎1 · {𝑛𝑖+1/𝑛𝑖 }. Further, we may notice that

𝜎2 · 𝜎𝑣 ∈ index(fn(𝑃2) ∪ 𝑢2 ∪ 𝑥2)
By Def. 4.6 and Def. C.8 we have that

𝑧̃ = fnb(𝑃2, bn(𝑥 : 𝐶) · 𝑦 \𝑤)

= bn(𝑥𝑦 (𝜎1 · 𝜎) : 𝐶𝑆)
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with 𝑦 : 𝑆 . Similarly, we have

𝑧̃𝜌2 · {𝑣̃/𝑦̃} = bn(𝑥𝑦𝜌2 · {𝑣/𝑦}(𝜎2 · 𝜎𝑣) : 𝐶𝑆)
Thus, by this and (135) the goal (134) follows. This concludes Rv case (and the base cases). We remark that base cases concerning

triggers collection processes follow by Lem. C.13. Next, we consider inductive cases.

(3) Case ParL. Here we know 𝑃1 = 𝑃 ′
1
| 𝑃 ′′

1
. The final rule in the inference tree is as follows:

𝑃 ′
1
{𝑢̃′

1/𝑦̃1}
ℓ−→ 𝑃 ′

2
{𝑢̃′

2/𝑦̃2} bn(ℓ) ∩ fn(𝑃 ′′
1
) = ∅

⟨Par𝐿 ⟩

𝑃 ′
1
{𝑢̃′

1/𝑦̃1} | 𝑃 ′′
1
{𝑢̃′′

1/𝑧1}
ℓ−→ 𝑃 ′

2
{𝑢̃′

2/𝑦̃2} | 𝑃 ′′
1
{𝑢̃′′

1/𝑧2}

Let 𝜎1 ∈ index(fn(𝑃1) ∪ 𝑢 ∪ 𝑥). Further, let 𝑦 = fnb(𝑃 ′
1
, 𝑥∗), 𝑧̃ = fnb(𝑃 ′′

1
, 𝑥∗), 𝑢∗ = bn(𝑢𝜎1 : 𝐶), 𝑥∗ = bn(𝑥𝜎1 : 𝐶) with 𝑢 : 𝐶 , and

𝜌m = {𝑢∗/𝑥∗}. In sub-case (i), by the definition of S (Tab. 4), there are following possibilities for 𝑄1:

𝑄1

1
= (𝜈 𝑐̃𝑘 ) (𝑐𝑘 !⟨𝑢∗⟩ | B𝑘

𝑥∗

(
𝑃1𝜎1

)
)

𝑄2

1
= 𝑐𝑘 !⟨𝑦𝜌m⟩.𝑐𝑘+𝑙 !⟨̃𝑧𝜌m⟩ | B𝑘

𝑦̃

(
𝑃 ′

1
𝜎1

)
| B𝑘+𝑙

𝑧

(
𝑃 ′′

1
𝜎1

)
𝑁 3

1
= {(𝑅′

1
| 𝑅′′

1
) : C𝑦̃𝜌m

𝑦̃

(
𝑃 ′

1
𝜎1

)
, 𝑅′′

1
∈ C𝑧𝜌m

𝑧

(
𝑃 ′′

1
𝜎1

)
}

By Lem. C.12 there exist

𝑄 ′
1
∈ C𝑦̃𝜌m

𝑦̃

(
𝑃 ′

1
𝜎1

)
(136)

𝑄 ′′
1
∈ C𝑧𝜌m

𝑧

(
𝑃 ′′

1
𝜎1

)
(137)

such that

𝑄1

1

𝜏
=⇒ 𝑄2

1

𝜏
=⇒ 𝑄 ′

1
| 𝑄 ′′

1

Thus, in both cases we consider how 𝑄 ′
1
| 𝑄 ′′

1
evolves. By the definition of S we have

𝑃 ′
1
𝜌 ′

1
S𝑄 ′

1
(138)

𝑃 ′′
1
𝜌 ′′

1
S𝑄 ′′

1
(139)

To apply IH we do the case analysis on the action ℓ :

• Sub-case ℓ ≡ 𝑛?⟨𝑣⟩. If 𝑣 ∈ 𝑢 then we take 𝜎𝑣 = 𝜎1, otherwise 𝜎𝑣 = {𝑣𝑗/𝑣} for 𝑗 > 0. Then, by applying IH to (138) we know there is

𝑄 ′
2
such that 𝑄 ′

1

𝑛?⟨𝑣̃⟩
=⇒ 𝑄 ′

2
and

𝑃 ′
2
{𝑢̃′

2/𝑦̃2} S 𝑄 ′
2

(140)

where 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ and 𝑢
′
2
= 𝑢 ′

1
· 𝑣̃ . We should show that

𝑃 ′
2
𝜌 ′

2
| 𝑃 ′′

1
𝜌 ′′

1
S𝑄 ′

2
| 𝑄 ′′

1
(141)

where 𝜌 ′
2
= {𝑢̃′

2/𝑦̃1} and 𝜌 ′′
1
= {𝑢̃′′

1/𝑧1}. Let 𝜎2 = 𝜎1 · next(𝑛𝑖 ) such that {𝑛𝑖/𝑛} ∈ 𝜎1. Then, by (140) we know

𝑄 ′
2
∈ Ĉ𝜌′

2

𝜎2 ·𝜎𝑣

(
𝑃 ′

2

)
(142)

By the definition of 𝜎𝑣 and 𝜎2 we may see that

Ĉ𝜌′′
1

𝜎2 ·𝜎𝑣

(
𝑃 ′′

1

)
= Ĉ𝜌′′

1

𝜎1

(
𝑃 ′′

1

)
So, by (142) and (137) we have

𝑄 ′
2
| 𝑄 ′′

1
∈ Ĉ𝜌′

2
·𝜌′

1

𝜎2 ·𝜎𝑣

(
𝑃 ′

2
| 𝑃 ′′

1

)
(143)

Further, we may notice that 𝜎2 · 𝜎𝑣 ∈ index(fn(𝑃 ′
2
| 𝑃 ′′

1
) ∪ 𝜌 ′

2
∪ 𝜌 ′′

1
). So, by this and (143) the goal (141) follows.

• Sub-case ℓ = 𝜏 . By applying IH to (138) we know there is 𝑄 ′
2
such that 𝑄 ′

1

ℓ
=⇒ 𝑄 ′

2
and

𝑃 ′
2
𝜌 ′

2
S 𝑄 ′

2
(144)

where 𝜌 ′
2
= {𝑢̃′

2/𝑦̃2}. We should show that

𝑃 ′
2
𝜌 ′

2
| 𝑃 ′′

1
𝜌 ′′

1
S𝑄 ′

2
| 𝑄 ′′

1
(145)

By (144), we know there is 𝜎2 ∈ index(fn(𝑃2) ∪ 𝜌 ′
2
) such that

𝑄 ′
2
∈ Ĉ𝜌′

2

𝜎2

(
𝑃 ′

2

)
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Further, by remark we know that either 𝜎 ′
2
= 𝜎1 · {𝑛𝑖+1/𝑛𝑖 } · {𝑛𝑖+1/𝑛𝑖 } for some 𝑛𝑖 , 𝑛𝑖 ∈ fn(𝑃 ′

2
𝜌 ′

2
) and 𝑛𝑖 , 𝑛𝑖 ∉ fn(𝑃 ′′

1
𝜌 ′′

1
) or 𝜎 ′

2
= 𝜎1

such that

Ĉ𝜌′
2

𝜎2

(
𝑃 ′

2

)
= Ĉ𝜌′

2

𝜎′
2

(
𝑃 ′

2

)
By this we have that

Ĉ𝜌′
1

𝜎′
2

(
𝑃 ′

1

)
= Ĉ𝜌′

1

𝜎1

(
𝑃 ′

1

)
So, we know that

𝑄 ′
2
| 𝑄 ′′

1
∈ Ĉ𝜌′

2
·𝜌′′

1

𝜎′
2

(
𝑃 ′

2
| 𝑃 ′′

1

)
By (144) and (137) and the definition of 𝜎 ′

2
the goal (145) follows.

• Sub-case ℓ ≡ (𝜈 𝑚1)𝑛!⟨𝑣 : 𝐶1⟩. Here we omit details on substitutions as they are similar to the first sub-case. By applying IH to (138)

we know there is 𝑄 ′
2
such that 𝑄 ′

1

ℓ
=⇒ 𝑄 ′

2
and

(𝜈 𝑚1) (𝑃 ′2 ∥ 𝑡 ⇐C 𝑣 :𝐶1) S (146)

(𝜈 𝑚2) (𝑄 ′
2
∥ 𝑡 ⇐m 𝑣𝜎1 :𝐶1) (147)

We should show that

(𝜈 𝑚1) (𝑃 ′2 | 𝑃 ′′
1

∥ 𝑡 ⇐C 𝑣 :𝐶1) S (148)

(𝜈 𝑚2) (𝑄 ′
2
| 𝑃 ′′

1
∥ 𝑡 ⇐m 𝑣𝜎1 :𝐶1) (149)

By Def. C.10 and Tab. 4 from (146) we can infer the following:

𝑃 ′
2
{𝑢̃′

1/𝑦̃′} S 𝑄 ′
2

(150)

So, by (139) and (150) the goal (148) follows.

This concludes ParL case.
(4) Case Tau. Here we know 𝑃1 = 𝑃 ′

1
| 𝑃 ′′

1
. Without the loss of generality, we assume ℓ1 = (𝜈 𝑚1)𝑛𝑖 !⟨𝑣1⟩ and ℓ2 = 𝑛𝑖?(𝑣1). Let 𝜌 ′

1
= {𝑢̃′

1/𝑦̃}
and 𝜌 ′′

1
= {𝑢̃′′

1/𝑧} such that

𝑃1𝜌1 = 𝑃 ′
1
𝜌 ′

1
| 𝑃 ′′

1
𝜌 ′′

1

Then, the final rule in the inference tree is as follows:

𝑃 ′
1
𝜌 ′

1

ℓ1−→ 𝑃 ′
2
𝜌 ′

2
𝑃 ′′

1
𝜌 ′′

1

ℓ2−→ 𝑃 ′′
2
𝜌 ′

2
ℓ1 ≍ ℓ2

⟨Tau⟩
𝑃 ′

1
𝜌 ′

1
| 𝑃 ′′

1
𝜌 ′′

1

𝜏−→ (𝜈 𝑚1) (𝑃 ′
2
𝜌 ′

2
| 𝑃 ′′

2
𝜌 ′′

2
)

Let 𝜎1, 𝑦, 𝑧̃, 𝑢∗, 𝑥∗, and 𝜌m be defined as in the previous case. Further, 𝑄1 can have shapes: 𝑄1

1
, 𝑄2

1
, and 𝑁 3

1
as in the previous case. As

in the previous case, we know that there are

𝑄 ′
1
∈ C𝑦̃𝜌m

𝑦̃

(
𝑃 ′

1
𝜎1

)
(151)

𝑄 ′′
1
∈ C𝑧𝜌m

𝑧

(
𝑃 ′′

1
𝜎1

)
(152)

such that

𝑄1

1

𝜏
=⇒ 𝑄2

1

𝜏
=⇒ 𝑄 ′

1
| 𝑄 ′′

1

Thus, in both cases we consider how 𝑄 ′
1
| 𝑄 ′′

1
evolves. By the definition of S we have

𝑃 ′
1
𝜌 ′

1
S𝑄 ′

1
(153)

𝑃 ′′
1
𝜌 ′′

1
S𝑄 ′′

1
(154)

We apply IH component-wise:

• By applying IH to (153) we know there is 𝑄 ′
2
such that 𝑄 ′

1

(𝜈𝑚2)𝑛𝑖 !⟨𝑣̃⟩
=⇒ 𝑄 ′

2
and

(𝜈 𝑚1) (𝑃 ′2 ∥ 𝑡 ⇐C 𝑣 :𝐶1)𝜌 ′2 S (155)

(𝜈 𝑚2) (𝑄 ′
2
∥ 𝑡 ⇐m 𝑣𝜎1 :𝐶1) (156)

where 𝑣𝜎1 ⊲⊳c 𝑣̃ .

• By applying IH to (154) we know there is 𝑄 ′′
2
such that 𝑄 ′′

1

𝑛𝑖?⟨𝑣̃⟩
=⇒ 𝑄 ′′

2
and

𝑃 ′′
2
𝜌 ′′

2
S 𝑄 ′′

2
(157)
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Now, by (155) we can infer:

𝑃 ′
2
𝜌 ′

2
S𝑄 ′

2

By this we know there is 𝜎 ′
2
∈ index(fn(𝑃 ′

2
) ∪ 𝜌 ′

2
) such that

𝑄 ′
2
∈ Ĉ𝜌′

2

𝜎′
2

(
𝑃 ′

2

)
Moreover, we know that it must be 𝜎 ′

2
⊆ 𝜎1 · next(𝑛𝑖 ). So, we have

𝑄 ′
2
∈ Ĉ𝜌′

2

𝜎1 ·next(𝑛𝑖 )
(
𝑃 ′

2

)
Similarly, there is 𝜎 ′′

2
∈ index(fn(𝑃 ′′

2
) ∪ 𝜌 ′′

2
) and 𝜎 ′′

2
⊆ 𝜎1 · next(𝑛𝑖 ), so we have the following

𝑄 ′′
2
∈ Ĉ𝜌′′

2

𝜎1 ·next(𝑛𝑖 )
(
𝑃 ′′

2

)
So, we have

𝑄 ′
2
| 𝑄 ′′

2
∈ Ĉ𝜌′

2
·𝜌′′

2

𝜎1 ·next(𝑛𝑖 ) ·next(𝑛𝑖 )
(
𝑃 ′

2
| 𝑃 ′′

2

)
By definition of Def. C.9, there is 𝜎2 ∈ index(fn(𝑃 ′

2
| 𝑃 ′′

2
) ∪ 𝜌 ′

2
∪ 𝜌 ′′

2
) such that 𝜎2 ⊆ 𝜎1 · next(𝑛𝑖 ) · next(𝑛𝑖 ). That is, we know

Ĉ𝜌′
2
·𝜌′′

2

𝜎2

(
𝑃 ′

2
| 𝑃 ′′

2

)
= Ĉ𝜌′

2
·𝜌′′

2

𝜎1 ·next(𝑛𝑖 ) ·next(𝑛𝑖 )
(
𝑃 ′

2
| 𝑃 ′′

2

)
Thus, we can conclude

(𝜈 𝑚1) (𝑃 ′2 | 𝑃 ′′
2
)𝜌 ′

2
· 𝜌 ′′

2
S (𝜈 𝑚2) (𝑄 ′

2
| 𝑄 ′′

2
)

This concludes Tau case.

Recursion cases Now, we consider cases where 𝑃 ′
1
≡ 𝜇𝑋 .𝑃∗

1
is a parallel component of 𝑃1. We focus on cases that highlight specifics of

the breakdown of recursive processes and omit details that are similar to the corresponding non-recursive cases.

(1) Case Rv. Here we know 𝑃1 = 𝑛?(𝑦).𝑃2 such that 𝑃1 ≡ 𝜇𝑋 .𝑃∗
1
. Let

𝑃1

1
= 𝛼𝑑 .𝛼𝑑−1

. . . . .𝛼𝑑−𝑝 .(𝑃𝑋 | 𝑅)

where 𝑅 and 𝑃𝑋 are some processes, 𝑃𝑋 contains 𝑋 and 𝛼𝑑 = 𝑛?(𝑦). As 𝑃1 is a recursive process, we know that there is 𝜇𝑋 .𝑃∗ such
that 𝑃1

1
is its sub-processes and

𝑃1 ≡ 𝑃1

1
{𝜇𝑋 .𝑃∗/𝑋 }

Here we can distinguish two sub-cases: (i) 𝑝 > 0 and (ii) 𝑝 = 0 and 𝑅 . 0. We know there is 𝜌2 = {𝑢̃2/𝑥̃2} such that

𝑃1𝜌1 = 𝑛𝜌1?(𝑦) .𝑃2𝜌2

The transition is as follows:

⟨Rv⟩

𝑃1

1
{𝜇𝑋 .𝑃∗/𝑋 }

𝑛?(𝑣)
−→ 𝑃2𝜌2 · {𝑣/𝑦}

Let 𝜎1 = 𝜎 ′ · {𝑛𝑖/𝑛} where 𝜎 ′ ∈ index(fn(𝑃1) ∪ 𝑢 ∪ 𝑥) and 𝜎2 = 𝜎1 · 𝜎 where 𝜎 = next(𝑛𝑖 ) · {𝑦1/𝑦}. Further, let 𝑢∗ = bn(𝑢𝜎1 : 𝐶) and
𝑥∗ = bn(𝑥𝜎1 : 𝐶) with 𝑢 : 𝐶 . Also, let 𝑦 = (𝑦1, . . . , 𝑦 |G (𝑆) |) and 𝑧̃ = fnb(𝑃2, 𝑥∗𝑦 \𝑤) where𝑤 = {𝑛𝑖 } if lin(𝑛𝑖 ) otherwise𝑤 = 𝜖 .

We could see that 𝑑 = recd(𝛼𝑑 , 𝛼𝑑−1
, . . . , 𝛼1 .𝜇𝑋 .𝑃∗

1
). So, by Tab. 5 there are following possibilities for the shape of𝑄1, namely elements

in 𝑁 defined as:

𝑁 = {(𝜈 𝑐̃)𝑅 : 𝑅 ∈ C𝑢∗
rec 𝑥∗,𝜌

(
𝜇𝑋 .𝑃∗

)𝑑 }
Let

𝑄1

1
= (𝜈 𝑐̃)𝐵1 | 𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1

!⟨̃𝑧𝜌⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).𝑛𝑙 ?(𝑦) .𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝛼𝑑 , 𝛼𝑑−1

.𝑃2

1
𝜎
)
𝑔

where 𝐵1 is, intuitively, trios mimicking prefixes before 𝛼𝑑 and 𝑃2

1
is such that 𝑃1

1
= 𝛼𝑑 .𝛼𝑑−1

.𝑃2

1
. By unfolding definition of

C𝑢∗
rec 𝑥∗,𝜌

(
𝜇𝑋 .𝑃∗

)𝑑
we have that 𝑄1

1
∈ 𝑁 . Further, if 𝑅 ∈ C𝑢∗

rec 𝑥∗,𝜌

(
𝜇𝑋 .𝑃∗

)𝑑
then 𝑅

𝜏
=⇒ 𝑄1

1
. So, we only analyze how 𝑄1

1
evolves.

We can infer the following:

𝑄1

1

𝑛𝑖𝜌?⟨𝑣̃⟩
−→ 𝑄2

where

𝑄2 = 𝐵1 | 𝑐𝑟
𝑘+1

!⟨̃𝑧𝜌 · {𝑣̃/𝑦̃}⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | A𝑘+1

rec 𝑧

(
𝛼𝑑−1

.𝑃2

1
𝜎
)
𝑔
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with 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ for some 𝜎𝑣 ∈ index(𝑣). Now, we should show that

𝑃2𝜌2 · {𝑣/𝑦} S𝑄2 (158)

Let 𝑢𝑧 = 𝑧𝜌2 · {𝑣̃/𝑦̃}. In sub-case (i) we should show that 𝑄2 ∈ C𝑢̃𝑧
𝑧

(
𝛼𝑑−1

.𝑃2

1

)
. So, we should show that

𝑄2 ∈ C𝑢̃𝑧

rec 𝑧,𝜌2 ·{𝑣̃/𝑦̃ }

(
𝑃∗

)𝑑−1

𝑔

This follows by the inspection of definition J𝑘

rec 𝑧,𝜌2 ·{𝑣̃/𝑦̃ }

(
𝑃∗

)𝑑−1

𝑔 . That is, we can notice that

𝑄1

2
= 𝐵1 | 𝐵2

where 𝐵2 ∈ J𝑘

rec 𝑧,𝜌2 ·{𝑣̃/𝑦̃ }

(
𝛼𝑑−1

.𝑃2

1
𝜎
)𝑑−1

𝑔 as (𝑑 − 1) + 1 = recd(𝛼𝑑 .𝛼𝑑−1
.𝑃2

1
𝜎). So, (158) follows. This concludes sub-case (i).

In sub-case (ii) we know 𝑃2 ≡ 𝛼𝑑−1
.𝑃2

1
| 𝑅. Now, by Tab. 5 we have 𝑄2

𝜏−→ 𝑄2

2
where

𝑄2

2
=(𝜈 𝑐̃)𝑉1 | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑢𝑧2

⟩ | 𝑉2

where

𝑉1 =𝐵1 | 𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥).𝑛𝑙 ?(𝑦).𝑐𝑟𝑘+1
!⟨̃𝑧⟩.𝑋 | 𝑐𝑟

𝑘+1
!⟨𝑢𝑧1

⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑥) .(𝑐𝑟
𝑘+1

!⟨̃𝑧1⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨̃𝑧2⟩)

𝑉2 =A𝑘+1

rec 𝑧1

(
𝑃𝑋

)
𝑔1

| A𝑘+𝑙+1

rec 𝑧2

(
𝑅
)
∅

Now, we should show that 𝑄2

2
∈ C𝑢̃𝑧

𝑧

(
𝛼𝑑−1

.𝑃2

1
| 𝑅

)
. By Tab. 5 we have that

{𝑅1 | 𝑅2 : 𝑅1 ∈ C𝑢̃𝑧
1

rec 𝑧1

(
𝛼𝑑−1

.𝑃2

1

)
, 𝑅2 ∈ C𝑢̃𝑧

2

𝑧2

(
𝑅
)
} ⊆ C𝑢̃𝑧

𝑧

(
𝛼𝑑−1

.𝑃2

1
| 𝑅

)
(159)

Further, we know that

(𝜈 𝑐̃𝑘+𝑙+1
)𝑐𝑟
𝑘+𝑙+1

!⟨𝑢𝑧⟩ | A𝑘+𝑙+1

rec 𝑧2

(
𝑅
)
∅ ∈ C𝑢̃𝑧

2

𝑧2

(
𝑅
)

(160)

and

𝑉1 | 𝑉2 ∈ C𝑢̃𝑧
1

rec 𝑧1

(
𝛼𝑑−1

.𝑃2

1

)
(161)

Thus, by (159), (160), and (161) we have the following:

𝑉1 | 𝑉2 | (𝜈 𝑐̃𝑘+𝑙+1
)𝑐𝑟
𝑘+𝑙+1

!⟨𝑢𝑧⟩ | A𝑘+𝑙+1

rec 𝑧2

(
𝑅
)
∅ ∈ C𝑢̃𝑧

𝑧

(
𝛼𝑑−1

.𝑃2

1
| 𝑅

)
Now, we can notice that 𝑐̃𝑘+𝑙+1

∩ fpn(𝑉1) = ∅ and 𝑐̃𝑘+𝑙+1
∩ fpn(A𝑘+1

rec 𝑧1

(
𝑃𝑋

)
𝑔1
) = ∅. Further, we have

(𝜈 𝑐̃𝑘+𝑙+1
)A𝑘+𝑙+1

rec 𝑧2

(
𝑅
)
∅ ≈C 0

(where ≈C
is defined in Definition 18 [9]) as first shared trigger 𝑐𝑘+𝑙+1

in the breakdown of 𝑅 is restricted so it could not get activated.

Thus, we have

𝑄2

2
≡ 𝑉1 | 𝑉2 | (𝜈 𝑐̃𝑘+𝑙+1

)𝑐𝑟
𝑘+𝑙+1

!⟨𝑢𝑧⟩ | A𝑘+𝑙+1

rec 𝑧2

(
𝑅
)
∅

This concludes Rv case. Now, we consider the inductive case.

(2) Case ParL. Here we know 𝑃1 = 𝑃 ′
1
| 𝑃 ′′

1
. Similarly to the previous case, let

𝑃1

1
= 𝛼𝑑 .𝛼𝑑−1

. . . . .𝛼𝑑−𝑝 .(𝑃𝑋 | 𝑅)

We assume 𝑃 ′
1
is a recursive process. So, we know there is 𝜇𝑋 .𝑃∗ such that 𝑃1

1
is its subprocess and

𝑃 ′
1
≡ 𝑃1

1
{𝜇𝑋 .𝑃∗/𝑋 }

Here, we can distinguish two sub-cases: (i) 𝑃 ′′
1
≡ 𝑅 and (ii) 𝑃 ′′

1
. 𝑅. Here, we consider sub-case (i) as it is an interesting case. The

sub-case (ii) is similar to the corresponding case of non-recursive process. As in the previous case, we can further distinguish cases in

which 𝑝 = 0 and 𝑝 > 0. We consider 𝑝 = 0 and ℓ = 𝑛?⟨𝑣⟩.
The final rule in the inference tree is as follows:

𝑃 ′
1
{𝑢̃′

1/𝑦̃1}
ℓ−→ 𝑃 ′

2
{𝑢̃′

2/𝑦̃2} | 𝑅{𝑤̃1/𝑧1} · {𝑢̃′
𝑅/𝑤̃1} bn(ℓ) ∩ fn(𝑃 ′′

1
) = ∅

⟨Par𝐿 ⟩

𝑃 ′
1
{𝑢̃′

1/𝑦̃1} | 𝑅{𝑢̃′′
1/𝑧1}

ℓ−→ 𝑃 ′
2
{𝑢̃′

2/𝑦̃2} | 𝑅{𝑢̃′′
1/𝑧1} | 𝑅{𝑤̃1/𝑧1} · {𝑢̃′

𝑅/𝑤̃1}
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Let 𝜎1 ∈ index(fn(𝑃1) ∪ 𝑢 ∪ 𝑥). Further, let 𝑦∗1
= fnb(𝑃 ′

1
, 𝑥∗), 𝑧∗1

= fnb(𝑅, 𝑥∗), 𝑢∗ = bn(𝑢𝜎1 : 𝐶) where 𝑥∗ = bn(𝑥𝜎1 : 𝐶) with 𝑢 : 𝐶 ,

and 𝜌m = {𝑢∗/𝑥∗}. By the definition of S (Tab. 5), there are following possibilities for 𝑄1:

𝑄1

1
=(𝜈 𝑐̃𝑘 ) (𝑐𝑘 !⟨𝑢∗⟩ | B𝑘

𝑥∗

(
𝑃1𝜎1

)
)

𝑄2

1
=(𝜈 𝑐̃𝑘 )𝑐𝑘 !⟨𝑢∗′2⟩.𝑐𝑘+𝑙 !⟨𝑢∗

′′
1
⟩ | B𝑘

𝑦∗1

(
𝑃 ′

1
𝜎1

)
| B𝑘+𝑙

𝑧∗1

(
𝑅𝜎1

)
𝑁 3

1
={(𝑅′

1
| 𝑅′′

1
) : C𝑢∗

′
2

rec 𝑦∗1

(
𝜇𝑋 .𝑃∗𝜎1

)𝑑
𝑔 , 𝑅

′′
1
∈ C𝑢∗

′′
1

𝑧∗1

(
𝑅𝜎1

)
}

By Lem. C.12 there exist

𝑄 ′
1
∈ C𝑢∗

′
2

rec 𝑦∗1

(
𝜇𝑋 .𝑃∗𝜎1

)𝑑
𝑔 (162)

𝑄 ′′
1
∈ C𝑢∗

′′
1

𝑧∗1

(
𝑅𝜎1

)
(163)

such that

𝑄1

1

𝜏
=⇒ 𝑄2

1

𝜏
=⇒ 𝑄 ′

1
| 𝑄 ′′

1

The interesting case is to consider a process 𝑄3

1
defined as:

𝑄3

1
=(𝜈 𝑐̃)𝑉1 | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑢∗′′1 ⟩ | 𝑉2

where

𝑉1 = 𝐵1 | 𝑐𝑟
𝑘+1

!⟨𝑢∗′2⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦∗1
) .(𝑐𝑟

𝑘+1
!⟨𝑦∗2

⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑧∗2
⟩)

𝑉2 = A𝑘+1

rec 𝑦∗2

(
𝑃𝑋

)
𝑔1

| A𝑘+𝑙+1

rec 𝑤̃∗2

(
𝑅{𝑤̃2/𝑧2}

)
∅

We have 𝑄3

1
≈C 𝑄 ′

1
| 𝑄 ′′

1
(≈C

is defined in Definition 18 [9]). We may notice that 𝑄3

1
can be a descendent of the recursive process

(following the similar reasoning as in the previous case). So, we consider how𝑄3

1
evolves. As in the corresponding case of non-recursive

processes, we do the case analysis on ℓ . If 𝑣 ∈ 𝑢 then we take 𝜎𝑣 = 𝜎1, otherwise 𝜎𝑣 = {𝑣𝑗/𝑣} for 𝑗 > 0. Now, we could see that

𝑄3

1

𝑛?⟨𝑣̃⟩
=⇒ 𝑄2

where

𝑄2 = (𝜈 𝑐̃)𝑉1 | 𝑐𝑟
𝑘+1

!⟨𝑢∗′2⟩.𝜇𝑋 .𝑐𝑟
𝑘

?(𝑦∗1
) .(𝑐𝑟

𝑘+1
!⟨𝑦∗2

⟩.𝑋 | 𝑐𝑟
𝑘+𝑙+1

!⟨𝑧∗1
⟩) | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑢∗′𝑅⟩ | 𝑉2

We define 𝑄1

2
as follows

𝑄1

2
= (𝜈 𝑐̃)𝑉1 | 𝑐𝑟

𝑘+1
!⟨𝑢∗′2⟩.𝜇𝑋 .𝑐𝑟

𝑘
?(𝑦∗1

).(𝑐𝑟
𝑘+1

!⟨𝑦∗2
⟩.𝑋 | 𝑐𝑟

𝑘+𝑙+1
!⟨𝑧∗1

⟩) | 𝑉2 |

(𝜈 𝑐̃𝑘 ) (𝑐𝑟𝑘 !⟨𝑢∗′′1 ⟩ | A
𝑘
rec 𝑧∗1

(
𝑅
)
∅) | (𝜈 𝑐̃𝑘 ) (𝑐𝑟𝑘 !⟨𝑢∗′𝑅⟩ | A

𝑘
rec 𝑤̃∗1

(
𝑅{𝑤̃1/𝑧1}

)
∅)

By definition, we could see that 𝑄1

2
∈ C𝑢∗2

𝑧∗1

(
𝑃 ′

2
| 𝑅 | 𝑅{𝑤̃1/𝑧1}

)
. Now, by the definition of A−rec −

(
·
)
∅ we have

𝑐𝑟
𝑘+𝑙+1

!⟨𝑢∗′′1 ⟩ | 𝑐
𝑟
𝑘+𝑙+1

!⟨𝑢∗′𝑅⟩ | A
𝑘+𝑙+1

rec 𝑧∗1

(
𝑅
)
∅ ≈C

(𝜈 𝑐̃𝑘 ) (𝑐𝑟𝑘 !⟨𝑢∗′′1 ⟩ | A
𝑘
rec 𝑧∗1

(
𝑅
)
∅) | (𝜈 𝑐̃𝑘 ) (𝑐𝑟𝑘 !⟨𝑢∗′𝑅⟩ | A

𝑘
rec 𝑤̃∗1

(
𝑅{𝑤̃1/𝑧1}

)
∅

As each trio in A𝑘+𝑙+1

rec 𝑧∗1

(
𝑅
)
∅ makes a replica of itself when triggered along a propagator. So, finally we have

𝑄2 ≈C 𝑄1

2

This concludes the proof.

□

Lemma C.8. Assume 𝑃1{𝑢̃/𝑥̃} is a well-formed process and 𝑃1{𝑢̃/𝑥̃} S𝑄1.

(1) Whenever 𝑄1

(𝜈𝑚2)𝑛̆!⟨𝑣̃:G(𝐶1) ⟩−→ 𝑄2 then there exist 𝑃2 and 𝜎𝑣 such that 𝑃1{𝑢̃/𝑥̃}
(𝜈𝑚1)𝑛!⟨𝑣:𝐶1 ⟩−→ 𝑃2 where 𝑣𝜎𝑣 ⊲⊳c 𝑣̃ and, for a fresh 𝑡 ,

(𝜈 𝑚1) (𝑃2 ∥ 𝑡 ⇐C 𝑣 :𝐶1) S (𝜈 𝑚2) (𝑄2 ∥ 𝑡 ⇐m 𝑣𝜎𝑣 :𝐶1)

(2) Whenever 𝑄1

𝑛̆?(𝑣̃)
−→𝑄2 then there exist 𝑃2 and 𝜎𝑣 such that 𝑃1{𝑢̃/𝑥̃}

𝑛?(𝑣)
−→ 𝑃2 where 𝑣𝜎𝑣 ⊲⊳ 𝑣̃ and 𝑃2 S 𝑄2,

(3) Whenever 𝑄1

𝜏−→𝑄2 either (i) 𝑃1{𝑢̃/𝑥̃} S 𝑄2 or (ii) there exists 𝑃2 such that 𝑃1

𝜏−→𝑃2 and 𝑃2 S 𝑄2.
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Sketch. Following Parrow, we refer to prefixes corresponding to prefixes of the original process as essential prefixes. We remark that a

prefix in D(𝑃) is non-essential if and only if is a prefix on a propagator name. First, we discuss case when transition is inferred without any

actions from essential prefixes. In this case we know that an action can only involve propagator prefixes and by inspection of definition of

C𝑢̃
𝑥̃

(
𝑃1

)
that ℓ = 𝜏 . This concerns the sub-case (i) of Part 3 and it directly follows by Lem. C.12.

Now, assume 𝑄1

ℓ−→ 𝑄2 when ℓ involves essential prefixes. This concerns Part 1, Part 2, and sub-case (ii) of Part 3. This case is mainly the

inverse of the proof of Lem. C.7. As Parrow, here we note that an essential prefix is unguarded in 𝑄1 if and only if it is unguarded in 𝑃1. That

is, by inspection of the definition, function C𝑢̃
𝑥̃

(
𝑃1

)
does not unguard essential prefixes of 𝑃1 that its members mimic (the propagators serve

as guards).

□

Theorem 5 (Operational Correspondence). Let 𝑃 be a 𝜋 process such that Γ1;Δ1 ⊢ 𝑃1. We have

Γ;Δ ⊢ 𝑃 ≈M H∗ (Γ);H∗ (Δ) ⊢ F ∗ (𝑃)

Proof. By Lem. C.7 and Lem. C.8 we know S is a MST bisimulation. So, we need to show (𝑃, F ∗ (𝑃)) ∈ S . Let 𝑃1 be such that 𝑃1{𝑟/𝑥̃} = 𝑃

where 𝑟̃ = rn(𝑃). Further, let 𝜎 =
⋃

𝑣∈𝑟 {𝑣1/𝑣}, so we have 𝜎 ∈ index(𝑟̃ ). Then, let 𝑟∗ = bn(𝑟̃ : 𝑆) and 𝑥∗ = bn(𝑥 : 𝑆) where 𝑟̃ : 𝑆 . Therefore,

by Def. 4.8 and Tab. 4 we have F ∗ (𝑃) ∈ C𝑟∗
𝑥∗

(
𝑃1

)
. Finally, by Def. C.10 we have (𝑃, F ∗ (𝑃)) ∈ S .

□
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