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Our Work: Session Types from First Principles

A study of sequentiality in session types for correct message-passing programs
Sequential composition in types is key to protocol specification, but is not supported
by most programming languages

Minimal session types (MSTs): Session types without sequential composition (*;")

Our prior work, a minimality result:

every well-typed process can be decomposed into a process typable with MSTs.

We focused on HO, a core higher-order process calculus (with abstraction passing).

In the paper: MSTs for a first-order 7-calculus (with name passing).

- A new minimality result for 7, based on the decomposition function F( - )
- F*(-): an optimized decomposition function without redundant communications
- Correctness proofs and examples for F( - ) and F*(-)

Minimality results based on MSTs do not depend on the kind of communicated objects
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Message-Passing Concurrency

e Key to most software systems today. Supported by Go, Erlang, Cloud Haskell, ...
e A typical e-commerce protocol:

— BookTitle —

»
>

Price
Address

PaymentServicelLink

UserCredentials »l
VerificationCode

Done

e Communication correctness is tricky! Out-of-order / mismatching messages, deadlocks. 2
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Widely developed, multiple extensions and implementations.
e Session type: what and when should be sent through a channel.

Correctness follows from type-level compatibility and linearity.
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Session Types: The Good

e Type-based approach to communication correctness.
Widely developed, multiple extensions and implementations.

e Session type: what and when should be sent through a channel.
Correctness follows from type-level compatibility and linearity.

e A session type for the payment service on channel/endpoint u:

u: ?(Str);?(Int);!(Bool);end

Sequential Composition in Session Types

e Distinctive feature. Very useful to specify / check intended protocol structures.

e Goes hand-in-hand with sequential composition in processes (prefixes):

Spay = u?(UserCredentials).u?( Verification).u!(IsBalanceOK).0




Session Types: The Reality

e Sequential composition in types not typically supported by programming languages.
Channel types only declare payload types and channel directions, not structure.
- In Go:

ch := make(chan int)

- In CloudHaskell:

(s,r) <- newChan::Process (SendPort Int, ReceivePort Int)



Session Types: The Reality

e Sequential composition in types not typically supported by programming languages.
Channel types only declare payload types and channel directions, not structure.
- In Go:
ch := make(chan int)

- In CloudHaskell:

(s,r) <- newChan::Process (SendPort Int, ReceivePort Int)

e Programmers must enforce sequentiality themselves ~~ Error-prone

e A gap between theory and practice, still not fully understood.
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Minimal Session Types (MSTs)

Session types without sequentiality — only ‘end’ can appear after ;'
Examples: ‘?(Str);end’ and ‘!(Int, Bool);end".




Understanding the Gap

Can we dispense with sequential composition in session types?

Minimal Session Types (MSTs)

Session types without sequentiality — only ‘end’ can appear after ;'
Examples: ‘?(Str);end’ and ‘!(Int, Bool);end".

Different justifications for standard session types:

e Formally:

Type-directed compilations to processes typable with MSTs (minimality result).
e Conceptually:

Session types in terms of themselves (absolute expressiveness).
e Pragmatically:

A potential new avenue for integrating session types in PLs.



A Language for MSTs?

A Hierarchy of Session-Typed Process Languages (Kouzapas et al. - ESOP'16, 1&C'19)

e HOm: the higher-order m-calculus with sessions.
Two relevant sub-calculi: m and HO.

e While 7 is strictly first-order (name passing only)...
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- Passing of abstractions Ax. P, channels to processes

\_/ - Recursive types, but no recursion in processes

- Very expressive! Can encode name-passing, recursion

e HO and 7w are mutually encodable.



A Language for MSTs?

A Hierarchy of Session-Typed Process Languages (Kouzapas et al. - ESOP'16, 1&C'19)

e HOm: the higher-order m-calculus with sessions.
Two relevant sub-calculi: m and HO.

e While 7 is strictly first-order (name passing only)...

e ... HO is a compact blend of \- and m-calculi:

- Passing of abstractions Ax. P, channels to processes
- Recursive types, but no recursion in processes
- Very expressive! Can encode name-passing, recursion

e HO and 7w are mutually encodable.

Our prior work (ECOOP’19) — HO with MSTs, denoted yHO

e Sequentiality in types can be codified by sequentiality in processes.

e Only sequential composition in processes is truly indispensable.
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MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

u : ?(Str);7(Int);!(Bool);end
1
PR D(P) -

@ 1 el 1 e

up : ?(Str);end  wo : ?(Int);end w3 : !(Bool);end

Sequencing in session types admits simpler explanations! If [ - P then G(I') - D(P).
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e Our decomposition for HO heavily exploits abstraction passing to obtain MSTs.



Open Question: MSTs for the 7-calculus

e Our decomposition for HO heavily exploits abstraction passing to obtain MSTs.

Open Question

Session types have been widely studied for first-order languages, with name passing.
Does the minimality result hold also for 7, the other sub-calculus of HO7?
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This Work: MSTs for =

Decomposition by Composition

e We reuse typed encodings between 7 and HO

e Compose three known functions:

° [[]]; :m— HO (typed encoding) [- ]]1
e D(-): HO — pHO  (decomposition function) [ l..........0 g,
e [-]?:HO — 7 (typed encoding) :
(Encodings on types are also composed.) F() D(-)
e The resulting function is F( ) : 7 — umw v
Correctness follows by composing the three functions < ----------- S uHO
(The decomposition on types is H( - )) [-]

e QOutcome: A positive, elegant answer to the open
question — the minimality result holds for 7, too



HO7 and Its Sub-calculi

n:=ab | s3

ww =n | xy.z

VoW s=ta | Pl [xy.7]

P,Q :=ul{V).P | u?(x).P

[[Vul | PI@ | wnP | 0| X | uXP
o The sub-language 7 lacks constructs

» The sub-language HO lacks 'shaded constructs

10



Session Types, Now Minimal

Session Types for =

S 14(S)

C
S u=NlCy;S | 2(C);S | pt.S | t | end

MSTs for 7

C =
M

v o=

M [ (M)

v | Wy | 2C)iry | pt.M
end | t

11



Session Types, Now Minimal

Session Types for = MSTs for 7
C=51|(S C = M| (M)
S u=NlCy;S | 2(C);S | pt.S | t | end M =~ | UC);y | 2(C)ivy | pt.M

v = end | t

Note: We often omit ‘end’. Thus, ‘1(C)’ and ‘?(C)’ stand for ‘1{C); end’ and ‘?(C); end"

11



MSTs for 7: Step by Step

Output case P = u;!(w}).Q
o First step A'%(-)g = D([-]}) : 7 = pHO

A% (u(w)).Q)g = ak?(%).ui (W) T3t (%) | A573(Qo)g (0= (uj: §) 2 {Uin1/ui}: {})

where W = Az1. (Gi1'() | ck17().-217(x). gl (x) | ch2?(x).(x w))

12



MSTs for 7: Step by Step

Output case P = u;!(w}).Q
o First step A'%(-)g = D([-]}) : 7 = pHO

A% (uit(w).Q) g = a?(%).uil(W).Ggs! (%) | A5 (Qo)g (0= (ui: $) 7 {Uw1/ui}: {})

where W = Az1. (Gi1'() | ck17().-217(x). gl (x) | ch2?(x).(x w))

e Second step A5(-)g = [AK(-)g]? : 7 — prm

AL (uit(w)). Q) g = a?(X)-(v a) (uil{a). (3! () | A5 (Qo)g |
at(y).y?z1).ckr1{z1) | ck+1?(z1).217(x).Chr2 ' (x) |

Ck+2?(x).(v ) (x!(s).5K(w))))
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MSTs for 7: Step by Step

Output case P = u;!(w}).Q
o First step A'%(-)g = D([-]}) : 7 = pHO
A% (0 (w).Q) g = a?(%).uil{ W) T3l (%) | A573(Q0) g (0 = (ui: $) 7 {ti+1/ui}: {})
where W = Azy. (61! () | cip120)-212(x)-Tera! (%) | crsa?(x). (x W)
o Second step A (- ); = [AX(-) ]2 : 7w = um

AL (uit(w)). Q) g = a?(X)-(v a) (uil{a). (3! () | A5 (Qo)g |
at(y).y?z1).ckr1{z1) | ck+1?(z1).217(x).Chr2 ' (x) |

Ck+2?(x).(v ) (x!(s).5K(w))))

F(P)= (o) (a!() | A (P))

12



MSTs for 7: Example

P implements channel u of type S = ?(Int);?(Int);!(Bool);end:

P=(vu:S)(w!u).u?(a).u?(b).ul(a > b).0 | w?(x).x!(5).x!(4).x7(b).0)
A B




MSTs for 7: Example

P implements channel u of type S = ?(Int);?(Int);!(Bool);end:

P=(vu:S)(w!u).u?(a).u?(b).ul(a > b).0 | w?(x).x!(5).x!(4).x7(b).0)
A B

The decomposition of P:
F(P)=(vc,..., o25)(@!().0 | (v ur)er?().@Y).c3!() | A (Ad') | A:CB(BJ’))

A2(A) AS(B)
2?()-(v a1) (wal(ar). ( c13?()- W1 ?(ya)- cia'(ya) |
G!() | A2(A) | (v s1)(c1a?(y)-cs1{y)-c16!() |
a?(y1)-n?(z1).GNaz) | cs?(ya)-(vs") (ya!(s").s"V(s1).0) |
c3?(z1).z17(x).ca!(x) | c167()-(v a3) (s1!(a3).(@21!() | c217().0 |
ca?(x).(v ) (x(s). 3@, T2, T3) ))) a37(ys)- ys2(x1, %2, 33). (ci7'() | AT (B)))))



MSTs for 7: Example

AZ(A)
?().(va1)(wal(ar). (
Gl() | AZ(A) |
a?(y1)n?(z1).GN ) |
c3?(z1).217(x).cal(x) |
[

e ?(x).(vs)(x(s). 51y, Ta, T3) )))

A13 (B)

c13?()- w1 ?(ya)- cia'(va) |
(vsi)(cia?(y)-cis/(y)-ci6
ci5?(ya)-(vs”) (yal(s").s
ci6?()-(v a3)(s1!(a3). (@21

a3?(ys). y5?(x1, X2, X3).

Minimal STs

W1'

My =2((?

M, =
Mz =

= H((7(?((?(Mr, M2, M3))))))
(?((?(Int))))))
2((7(2((7(Int))))))

= 1((?(?((?(Bool))))))

6'() |
s"I(s
1)
(a7

\
a7

1):0) |
()

)1 AT (B)))

14



An Optimized Decomposition

e Although conceptually simple, the function F( - ) obtained by “decompose by
composition” induces redundancies
e Suboptimal features:

1. channel redirections
2. redundant synchronizations
3. the structure of trio is lost

e Redundancies most prominent when treating recursive names and processes

15



An Optimized Decomposition

e Although conceptually simple, the function F( - ) obtained by “decompose by
composition” induces redundancies
e Suboptimal features:
1. channel redirections
2. redundant synchronizations
3. the structure of trio is lost
e Redundancies most prominent when treating recursive names and processes
e F*(-)is an optimized decomposition function:

1. removes redundant synchronizations
2. use native support for recursion in 7
3. recovers trio structure

Optimized decomposition on types: H*( -)

15



Optimized Decomposition: Example

P implements channel u of type S = ?(Int);?(Int);!(Bool);end:

P=(vu:S)(w!(u).u?(a).u?(b).ul{a> b).0 | w?(x).x!(5).x!(4).x?(b).0)
A B

The optimized decomposition:

FH(P) = (v &) (@) | (v un, s, us)er?()- 1) 61} | A2(A0) | AS(Bo))

22(A0) 45(80)
CQ?(). W1!<ﬂ1,U2,ﬁ3>. C73'<> ‘ Cs?(). Wl?(Xl,XQ,Xg,). 7! <X17 X2, X3> ’
C3?(). U]_?(a). cT;'(a) ‘ C7?(X1,X2,X3). X1!<5>. CT;!<X2, X3> |
C4?(). Ug?(b). cT;!(a, b> | Cg?(XQ, X3). X1!<4>. C79!<X3> |
C5?(). U3!<a > b> ?6|<> ’ C67()0 Cg?(XQ). X3?(b1). ?0'0 ‘ Clo?().o

16



Decomposing Session Types

A= u?(a).u?(b).ul{(a > b)).0

u : ?(Int);?(Int);!(Bool);end

|

L FH(A) [

C3?().u1?(a.).cf4!<a> | ca?(a).up?(b).c5!(a, b) || c57(a, b).u.3!(a > b).c!()

5
up : ?(Int) up : ?(Int) usz : (Bool)
a3 ?() cs 2 ?(Int) cs : ?(Int, Int)

17



Improvements: Comparing Types Decompositions

H()
M if S=end
H(CyS) =] € o=
Mc, H(S) otherwise

where

Mc =1 HONN

Mc if S=end
Mc, H(S) otherwise

H(?(C);S) :{

where

Mc =2((2(2(CHONN)

18



Improvements: Comparing Types Decompositions

H(-) H(-)
o Mc if S =end . oy _ Mc if S =end
Hler3) = {I\/IC,H(S) otherwise (e 5) {MC,’H*(S) otherwise
where where
Me =12 Mc =1(1*(C))
H(C): 5) = {MC if S = end MO S) = {/\/Ic if S = end
Mc, H(S) otherwise Mc ,H*(S) otherwise

where where

Mc =2((2(2(CHONN) Mc =7(H*(C))

18



Handling Recursive Processes and Recursive Names

Consider process
R=uX.r?(z).rl'{(—=z).r?(z).r'{z). X
Se— S N
t1 %] t3 ta
where channel r implements the type

S = pt.?2(Int);!(Int);t

e Type S is decomposed into
S1 = pt.7(Int);t So = pt.!(Int);t

e Trios in F*(R) must satisfy two properties:
1. mimic recursive behaviour
2. each instance should use the same decomposition of channel r, that is (11, r2)

19



Handling Recursive Processes and Recursive Names, Intuitively

OlIOCIOE
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Handling Recursive Processes and Recursive Names, Intuitively

ry :pt.?(Int);t

ool lloES

ry ot (Int);t

DIOI@®|
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Handling Recursive Processes and Recursive Names, Intuitively

ry :pt.?(Int);t

O @) -

r: ,ut'(lnt)
@ | @ @)=
ut ?(Int) D pt. ?(Int)-

@I@I@IQ

20



Handling Recursive Processes and Recursive Names, Intuitively

The trio structure for R = puX. r?(z). rl/(—z).r?(z). r!(z). X can be intuitively depicted as:
e N — N N~

t1 to t3 ta
rn 51 rn 51 n . 51 r 51 51
f2 52 f2 52 r2 52

21



Handling Recursive Processes and Recursive Names

R=uX.r?(z).rl'{(—=z).r?(z).r'{z). X
e~

t1 tr t3 ty

F*(R) implements the circular structure of R using six recursive parallel processes:

W, n).uX. ek 2y, y2). c/Vy1, y2). X | to
pX.c{(y1, y2) 1 %(z1). 5Ky, y2, 21). X | ty
pX.c§2(y1, y2, 21).y27(—21).c ! {y1, y2). X | t
pX.c5?(y1, y2) 1 ?(z1)- 4 y1, yo, z1). X | t3

pX.ci? (1, y2, z1).y27(21)-cE Ny v2) X | ta
pX.c§2(y1, y2)-l ek lya, yo)- X ts

22



Technical Results

e Quantifying improvements:

number of prefixes in F(P) > = - number of prefixes in F*(P)

w| ol

e Static correctness (Typability):
= P implies H*(I') = F*(P)

e Dynamic correctness:
P =M F*(P)

where ~M is a form of weak bisimilarity, a mild modification of the characteristic
bisimilarity by Kouzapas et al.

23



Conclusion




Related Work: Session Types into Linear Types (1/2)

Dardha, Giachino & Sangiorgi (PPDP'12) encode session-typed processes into processes
with linear types (Kobayashi et al.):

e Sequentiality handled via a “detour” from session type theories
e Processes refactored to carry over sequentiality, in a continuation-passing style

e Implementations in Scala (Scalas et al. - ECOOP’16), OCaml (Padovani, JFP'17),
Agda (Ciccone & Padovani, PPDP'20)

— Differently, our work clarifies the role of sequential composition in session types, both
conceptually and formally, using session types themselves.

24



Related Work: A Comparison with Dardha et al. (2/2)

A= wl(T).u?(a).u?(b).ul(a > b).0

Minimal STs

up 2 ?(Int), wa : ?(Int), us : (Bool)
wy @ [{(I{Int), !{Int), ?(Bool))

(vc)zW(T, c).
u?(a, c’).
c’?(b, c").
(v a>b,c").0

Linear Types

u : li[Int, i[Int, I,[Bool, unit]]]
w : lp[lo[Int, Io[Int, /;[Bool, unit]]], unit]




Conclusion: Minimal Session Types for 7 (1/2)

e A new minimality result for the session-typed 7-calculus by two decompositions:
1. F(-): A composition of encodability results and minimality results for HO
2. F*(-): An optimization without redundant synchronizations and with native recursion
e Main takeaway:
The minimality result based on MSTs is independent from communicated objects:
« abstractions in HO (ECOOP 2019)
+ names in 7 (This work)

26



Conclusion: Minimal Session Types for 7 (2/2)

e Potential for streamlining known session types frameworks, by removing redundancies.
e Bridging the gap between theories of session types and type systems in actual PLs.

In the Extended Version

e Full technical details
e Multiple examples of both decompositions

e https://arxiv.org/abs/2107.10936 .
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Syntax

n:=ab | s3
uw =n | x,y,z
viw = | [P [7.7]

P,Q = ul(V).P | u?(x).P

| [Vu] | P1Q | (vn)P | O | [X| uXP

Figure 1: Syntax of HO7x. The sub-language HO lacks shaded constructs, while 7 lacks
constructs.



Semantics

(Ax. P)u — P{4/x} [App]
n{(V).P|A?(x).Q — P | Q{V/x} [Pass]
P— P = (vn)P — (vn)P' [Res]
P—P =P Q—P|Q [Par]
P=Q —Q=P=P—F [Cong]

Pl‘PzEPQ‘Pl Pl‘(PQ‘P3)E(P1’P2)‘P3
PlO=P P|l(vmQ=(vn)(P|Q) (n¢fn(P))
(vn)0=0 puX.P = P{nX.P/x} P=QiftP=,Q

Figure 2: Operational Semantics of HO7.

29



Session Types

U:=C|L C =S5 1|(S) | (L)
S w=NU);S | 2(U);S
| pt.S | t | end

L=U—=o| U—o

U :=C—o | C—oo C =M | (U
v n=end | t M =~ | Uy | 2(U);y | pt.M

Figure 3: STs for HOx (top) and MSTs for HO (bottom).

30



Type encoding of 7w into HO

[ut(w).P]L °E ul(Az. 22(x).(x w)).[P]L
[u?(x: C).Ql; °E u?(y).(vs)(y s[5! (Ax. [Q]}).0)

[P QI = [Pl | [QI}

[(v n)PI} = (v n)[P]}
[0]; °= ©

[uX.PI} S (vs)(SHV).0 | s2(zx)-[P]% (xom)  where (/i = £n(P))

V = A(l,y)- y?(zx)- LIPIE 1xoa o

XD} = (vs)(zx (A,5) | 51{zx).0) (7 = g(X))

Figure 4: Typed encoding of 7 into HO, selection from [KPY19]. Above, fn(P) is a
lexicographically ordered sequence of free names in P. Maps | - || and Hﬂa are in Def. 1 and Fig. 5. 31



Auxiliary Mappings

Definition (Auxiliary Mappings)
We define mappings | - | and | - | asfollows:

e |- : 2V — V¥ isamap of sequences of lexicographically ordered names to
sequences of variables, defined inductively as:

lel = e

In, M| = xn, |M|  (x fresh)

« Given a set of session names and variables o, themap | - | : HO — HOisasin Fig. 5.

32



Auxiliary Mapping

[wlAx. Q).P] “E ulx [Q), )-IPI,  [we{li: Pitiei], *E us {li < |Pi] Yies

[w?(x).P] *E u?(x).|P], lw<alP] °E ual|P],
L(wn)P], "= wn)lPl,, O Qw], = (L@l ) u
[P1Ql, = [P, I 1el, [xw], *= xu
0], *= 0

X, if wis a name n and n & o (x fresh)

In all cases: u =
w otherwise: w is a variable or a name nand n€ o

Figure 5: Auxiliary mapping used to encode HO7 into HO.
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Type encoding of 7w into HO

Types:

(1" *=

(end)! oet

£ (2((S)! —00); end) —o

(
(2({(S)") —o); end) —oo
{

= (U] (s)!
2([U]); (S)!
Sy (ut.S) °Z it (S):
end (t)l def 4
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Typed encoding of HO into =

Terms:
[ul(Ax. Q).P]? °E
{(Va)(u!<a>'([[P]]2| x a?(y).y?(x).[Q]%) if £5(Q) =0
(va)(ul{a).([PI* | a?(y).y?(x).[Q]?))  otherwise
[u?(x).P]? °E u2(x).[P]?
[x u]? °E (vs)(x!(s).5!(u).0)
[(Ox. P)ul? *E (vs)(s2(x).[P]? | 5/(u).0)
Types:
(1{S—o0); S1)* = 1{(2((S)*); end)); (S1)
(2(S—00); S1)* = 2((2((5)?); end)); (S1)°
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MSTs for 7

C = M| (M)

v == end | t

M =5 | KCsivy | AC)iy | pt.M

Figure 7: Minimal Session Types for 7
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Decomposition of types

H((S)) = (H(S))

M if S’ = end

M, H(S") otherwise

where M =1{(?(?((?(H(S)); end)); end); end) ); end

H(1(S); S") :{

M if S’ = end
M, H(S") otherwise
where M =?((?(?((?(H(S)); end)); end); end)); end

H(?(S); S) = {

Figure 8: Decomposition of types H( - )
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Decomposition of types

H(ut.S) = {R’(S) if ut.S is tail-recursive
pt.H(S) otherwise
R'(1(S); §') = pt.1{(?(?((?(H(S)); end)); end); end) ); t, R'(S')
R'(2(S); S) = ut2(2(2((2(H(S)); end)); end), d));t,R'(S")

RO((S) S) = RA(S)  RU((S):S) = R (S)
R (ut.S) = R™*(S)
Figure 9: Decomposition of types H/( - )
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Decomposition of types Optimized

HA (St 2 Sn) = HA(S1)s s H(S)
HA((C): S) = I{H*(C)); end if S = end
ST {H*(C)); end, H*(S) otherwise
H(2(C); S) = ?2(H*(C)); end if S =end
ST ?(H*(C));end,H*(S) otherwise

Figure 10: Decomposition of types H*( )
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Decomposition of types Optimized

[
=t —
5 3@
— T X
» S
o ol |
£ = = =
2 o LY
o O
O
N
R R 5 ErRR
L | | | ||
HAOEO OO
e
Sy IO
~— ~ ~—~— ~ X
® S i
R

Figure 11: Decomposition of types H*( -)
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Type System

(SESS) (SH)
M0 {u:St+urS Fu:U;0;0Fu>U

(LVAR) (RVAR)
M {x: C—ooh0F x> C—o0 LX:ADAFX>o

(ABS) (ApP)
GAALEPre T0,00Ex>C TIANAEVECwo we{—,—} [0AFu>C
MN\x; A A\As F Ax. P> C—o0 MA AL A Vuso
(PrROM) (EPROM) (END)

HO;0F Ve C—oo MHMAXx:C—oo;AEPro TNAFPET uddom(lAA)
rg:0FVeoC—o Ix:C—ao;NAFPB>o MA;Au:end- Ppo 41




Type System

(Rec) (PAR)
XA AFP>o FAs A EPbe i=1,2 (NiL)
0, AFuX.Poo AL A A, Ao - Py | Pao Fg:0F0>o
(SEND)

u:SelA;, Ay TN AT EPoo TN A VU
M AL A (A1, D)\ u: S),u:(U); S ul(V).Pro

(Acc)
(Rev) TALGALEPoo T50,0F un (U)
MAGALu:SEPBo T A A x> U H A Ao ExoUd Ue{S, L}

M\x; A1\A2; A\Ap, u :?2(U); S E u?(x).P>o  T\x; A1\Ag; A1\Ap - u?(x).P>o
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Type System

(Acc)
CAGALEPoo T0:0 us (U)
A Ao ExoUd Ue{S, L}
M\x; Ai\A2; A1\As F u?(x).Ppo

(BrA) (SEL)
Viel T;NAu:5FPi>o HGAAu:SiEPro jel
CA A u: &{li: SitierFus{li: Pi}iei>o CAN A u:@{li:SitierFu<alj.Proo

(RESS) (RES)
MAAs:5,5:5FPro S dual S Ma:(S);,NAFPro
NANAE(vs)Pro HAAE(va)Pro

Figure 14: Typing Rules for HOx (including selection and branching constructs). 43



Minimal characteristic trigger process

Definition (Minimal characteristic processes)

(2(C): ) u2(x).(Euiss, - -, Ui iges))-0 | (C)F)
(HCY; S)¥ °E il {(C)e) tWujsn, - -, Uipg(s))-0
(end)¥ “< 0
() n{(C)e).t1{w).0
(ut.S)¢ = (S{end/t})l
(S)e "= 5 (|5 = |G(S)], 3 fresh)

((C))e = (a1 fresh)

Definition (Minimal characteristic trigger process)
Given a type C, the trigger process is

tmn v €2 12(x).(vs1)(s12(7)(CY | 5T1(7).0)



MST-Bisimilarity

A typed relation 3 is an MST bisimulation if for all '1; A1 F Py R Iy; Ao B Q1

1. Whenever I'1; A1 - Py v mlﬂ)v:q)

that [p; A, - @ ™ML (D

A%; N} F Py then there exist @2, A%, and o, such
AL F Qo where vo, < v and, for a fresh t,
AT E (wm)(Py|t<cv:G)R

AVE (vm)(Qa | t <g vo: Gy)

2. Whenever [1; Al - Py % AL F P, then there exist Qo A}, and oy such that

I'2 Agl—Ql A/ |—QQ where VU\,chand I'1 A/ |—P2§R|_2 A2|—Q2

3. Whenever I'1; A1 F P —> A F P,, with ¢ not an output or input, then there exist
Q2 and A such that 'p; Ao - Qq N ALE @ and T A E P RTo AL E Qo and
sub(¢) = n implies sub(¥) = A.

4. The symmetric cases of 1, 2, and 3. a5



Results: Typability

Theorem (Typability of Breakdown)

Let P be an initialized 7 process. If T; A, A, = P> o, then H(I"), ®'; H(A),© + AKX (P)g >0,
where k > 0;7 = dom(A,); " = [I,cz ¢ : ((?(R"*(AL(r))); end)); and balanced(©') with

dom(©') = {ck, Ckt1s - -+ Chp [P1—1} U{Chr1s -+ Chp [ P1-1)
such that ©'(¢x) =7(+); end.
Theorem (Minimality Result for 7)

Let P be a closed m process, with i = fn(P) and v = rn(P). If [; A, A, = P> o, where A,
only involves recursive session types, then
H(Fo); H(Ac), H(A o) b F(P) > o, where o = {init(u)/z}.
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Optimized Results: Typability

Theorem (Typability of Breakdown)

Let P be an initialized process. If I'; A - P > o then
H(M\X); H* (A\X),©FAF(P)>o (k> 0)

where x C £n(P) and y such that indexedr a(Yy, X). Also, balanced(©) with

dom(©) = {ck, k1, - Ch|p|—1} Y {Chki1s - Chgip—1}
and ©(c,) =?(M); end, where M = (H*(T"), H*(A))(¥).
Theorem (Minimality Result for 7, Optimized)

Let P be a 7 process with u = £n(P). IfT; A = P>othen H*(To); H*(Ac) = F*(P) >0,
where o = {init(v)/5},
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Results: Operational Correspondence

Theorem (Operational Correspondence)

Let P be a w process such that 'y; A1 - Py. We have

AR P &M HH ) HA(A) - F*(P)
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Related Work: CPS Cont’d

P implements channel u of type S = 7Int; ?Int; |Bool; end:

P=(vu:S)(wlu).u?(a).u?(b).ul{a> b).0 | w?(x).x!(5).x!(4).x?(b).0)
A B

CPS encoding
[Alwsz = (v ¢)zWu, c).u?(a, c').c?(b, c").(v )"V (a > b,c").0
[Blwesz = 22(x, ¢).(v )x1(5, ¢').(v )14, ¢").c""?(b, c'").0
[S] = /i[Int, /;[Int, I,[Bool, unit]]]
[S] = lo[Int, li[Int, Io[Bool, unit]]]
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