Minimal Session Types for the 7-calculus

PPDP 2021, Tallinn

Alen Arslanagié, Jorge A. Pérez, and Anda-Amelia Palamariuc

University of Groningen, The Netherlands

UNIFYING
CeRRECTNESS FOR
CeMMUNICATING
S*FTWARE

Our Work: Session Types from First Principles

e A study of sequentiality in session types for correct message-passing programs

e Sequential composition in types is key to protocol specification, but is not supported
by most programming languages

Our Work: Session Types from First Principles

e A study of sequentiality in session types for correct message-passing programs

Sequential composition in types is key to protocol specification, but is not supported
by most programming languages
e Minimal session types (MSTs): Session types without sequential composition (*;')

e Qur prior work, a minimality result:
every well-typed process can be decomposed into a process typable with MSTs.

We focused on HO, a core higher-order process calculus (with abstraction passing).

Our Work: Session Types from First Principles

A study of sequentiality in session types for correct message-passing programs
Sequential composition in types is key to protocol specification, but is not supported
by most programming languages

Minimal session types (MSTs): Session types without sequential composition (*;")

Our prior work, a minimality result:

every well-typed process can be decomposed into a process typable with MSTs.

We focused on HO, a core higher-order process calculus (with abstraction passing).

In the paper: MSTs for a first-order 7-calculus (with name passing).
- A new minimality result for 7, based on the decomposition function F(-)
- F*(-): an optimized decomposition function without redundant communications
- Correctness proofs and examples for F(-) and F*(-)

Our Work: Session Types from First Principles

A study of sequentiality in session types for correct message-passing programs
Sequential composition in types is key to protocol specification, but is not supported
by most programming languages

Minimal session types (MSTs): Session types without sequential composition (*;")

Our prior work, a minimality result:

every well-typed process can be decomposed into a process typable with MSTs.

We focused on HO, a core higher-order process calculus (with abstraction passing).

In the paper: MSTs for a first-order 7-calculus (with name passing).

- A new minimality result for 7, based on the decomposition function F(-)
- F*(-): an optimized decomposition function without redundant communications
- Correctness proofs and examples for F(-) and F*(-)

Minimality results based on MSTs do not depend on the kind of communicated objects

Context and Key Questions

Message-Passing Concurrency

e Key to most software systems today. Supported by Go, Erlang, Cloud Haskell, ...
e A typical e-commerce protocol:

— BookTitle —

»
>

Price
Address

PaymentServicelLink

UserCredentials »l
VerificationCode

Done

e Communication correctness is tricky! Out-of-order / mismatching messages, deadlocks. 2

Session Types: The Good

e Type-based approach to communication correctness.
Widely developed, multiple extensions and implementations.
e Session type: what and when should be sent through a channel.

Correctness follows from type-level compatibility and linearity.

Session Types: The Good

e Type-based approach to communication correctness.
Widely developed, multiple extensions and implementations.

e Session type: what and when should be sent through a channel.
Correctness follows from type-level compatibility and linearity.

e A session type for the payment service

7(Str);?(Int);!(Bool);end

Sequential Composition in Session Types

e Distinctive feature. Very useful to specify / check intended protocol structures.

Session Types: The Good

e Type-based approach to communication correctness.
Widely developed, multiple extensions and implementations.

e Session type: what and when should be sent through a channel.
Correctness follows from type-level compatibility and linearity.

e A session type for the payment service on channel/endpoint u:

u: ?(Str);?(Int);!(Bool);end

Sequential Composition in Session Types

e Distinctive feature. Very useful to specify / check intended protocol structures.

e Goes hand-in-hand with sequential composition in processes (prefixes):

Spay = u?(UserCredentials).u?(Verification).u!(IsBalanceOK).0

Session Types: The Reality

e Sequential composition in types not typically supported by programming languages.
Channel types only declare payload types and channel directions, not structure.
- In Go:

ch := make(chan int)

- In CloudHaskell:

(s,r) <- newChan::Process (SendPort Int, ReceivePort Int)

Session Types: The Reality

e Sequential composition in types not typically supported by programming languages.
Channel types only declare payload types and channel directions, not structure.
- In Go:
ch := make(chan int)

- In CloudHaskell:

(s,r) <- newChan::Process (SendPort Int, ReceivePort Int)

e Programmers must enforce sequentiality themselves ~~ Error-prone

e A gap between theory and practice, still not fully understood.

Understanding the Gap

Can we dispense with sequential composition in session types?

Minimal Session Types (MSTs)

Session types without sequentiality — only ‘end’ can appear after ;'
Examples: ‘?(Str);end’ and ‘!(Int, Bool);end".

Understanding the Gap

Can we dispense with sequential composition in session types?

Minimal Session Types (MSTs)

Session types without sequentiality — only ‘end’ can appear after ;'
Examples: ‘?(Str);end’ and ‘!(Int, Bool);end".

Different justifications for standard session types:

e Formally:

Type-directed compilations to processes typable with MSTs (minimality result).
e Conceptually:

Session types in terms of themselves (absolute expressiveness).
e Pragmatically:

A potential new avenue for integrating session types in PLs.

A Language for MSTs?

A Hierarchy of Session-Typed Process Languages (Kouzapas et al. - ESOP'16, 1&C'19)

e HOm: the higher-order m-calculus with sessions.
Two relevant sub-calculi: m and HO.

e While 7 is strictly first-order (name passing only)...

e ... HO is a compact blend of \- and m-calculi:
- Passing of abstractions Ax. P, channels to processes

_/ - Recursive types, but no recursion in processes

- Very expressive! Can encode name-passing, recursion

e HO and 7w are mutually encodable.

A Language for MSTs?

A Hierarchy of Session-Typed Process Languages (Kouzapas et al. - ESOP'16, 1&C'19)

e HOm: the higher-order m-calculus with sessions.
Two relevant sub-calculi: m and HO.

e While 7 is strictly first-order (name passing only)...

e ... HO is a compact blend of \- and m-calculi:

- Passing of abstractions Ax. P, channels to processes
- Recursive types, but no recursion in processes
- Very expressive! Can encode name-passing, recursion

e HO and 7w are mutually encodable.

Our prior work (ECOOP’19) — HO with MSTs, denoted yHO

e Sequentiality in types can be codified by sequentiality in processes.

e Only sequential composition in processes is truly indispensable.

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

u : ?(Str);7(Int);!(Bool);end

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

u : ?(Str);7(Int);!(Bool);end
1
D(P)

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

u : ?(Str);7(Int);!(Bool);end
1
e [DAY

@] I [@] 1 [e)

up : ?(Str);end wo : ?(Int);end w3 : !(Bool);end

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

u : ?(Str);7(Int);!(Bool);end
1
e [DAY

@ 1 el 1 e

up : ?(Str);end wo : ?(Int);end w3 : !(Bool);end

MSTs, In One Slide

A process P typed with standard session types 51, ..., Sp:

e Sequencing in S1,...,S, is codified by D(P), the decomposition of P.
e Each session type S; is decomposed into G(S;), a list of minimal session types.

u : ?(Str);7(Int);!(Bool);end
1
PR D(P) -

@ 1 el 1 e

up : ?(Str);end wo : ?(Int);end w3 : !(Bool);end

Sequencing in session types admits simpler explanations! If [- P then G(I') - D(P).

Open Question: MSTs for the 7-calculus

S~

e Our decomposition for HO heavily exploits abstraction passing to obtain MSTs.

Open Question: MSTs for the 7-calculus

e Our decomposition for HO heavily exploits abstraction passing to obtain MSTs.

Open Question

Session types have been widely studied for first-order languages, with name passing.
Does the minimality result hold also for 7, the other sub-calculus of HO7?

This Work

This Work: MSTs for =

Decomposition by Composition

e We reuse typed encodings between 7 and HO

This Work: MSTs for =

Decomposition by Composition

e We reuse typed encodings between 7 and HO

e Compose three known functions:

e [-]; :m—HO (typed encoding) [
e D(-): HO — pHO (decomposition function) [l..........0 g,
e [-]?:HO — 7 (typed encoding) :
(Encodings on types are also composed.) F() D(-)
e The resulting function is F() : 7 — umw v
Correctness follows by composing the three functions < -------------------- uHO

(The decomposition on types is H(-)) [-1?

This Work: MSTs for =

Decomposition by Composition

e We reuse typed encodings between 7 and HO

e Compose three known functions:

° [[]]; :m— HO (typed encoding) [-]]1
e D(-): HO — pHO (decomposition function) [l..........0 g,
e [-]?:HO — 7 (typed encoding) :
(Encodings on types are also composed.) F() D(-)
e The resulting function is F() : 7 — umw v
Correctness follows by composing the three functions < ----------- S uHO
(The decomposition on types is H(-)) [-]

e QOutcome: A positive, elegant answer to the open
question — the minimality result holds for 7, too

HO7 and Its Sub-calculi

n:=ab | s3

ww =n | xy.z

VoW s=ta | Pl [xy.7]

P,Q :=ul{V).P | u?(x).P

[[Vul | PI@ | wnP | 0| X | uXP
o The sub-language 7 lacks constructs

» The sub-language HO lacks 'shaded constructs

10

Session Types, Now Minimal

Session Types for =

S 14(S)

C
S u=NlCy;S | 2(C);S | pt.S | t | end

MSTs for 7

C =
M

v o=

M [(M)

v | Wy | 2C)iry | pt.M
end | t

11

Session Types, Now Minimal

Session Types for = MSTs for 7
C=51|(S C = M| (M)
S u=NlCy;S | 2(C);S | pt.S | t | end M =~ | UC);y | 2(C)ivy | pt.M

v = end | t

Note: We often omit ‘end’. Thus, ‘1(C)’ and ‘?(C)’ stand for ‘1{C); end’ and ‘?(C); end"

11

MSTs for 7: Step by Step

Output case P = u;!(w}).Q
o First step A'%(-)g = D([-]}) : 7 = pHO

A% (u(w)).Q)g = ak?(%).ui (W) T3t (%) | A573(Qo)g (0= (uj: §) 2 {Uin1/ui}: {})

where W = Az1. (Gi1'() | ck17().-217(x). gl (x) | ch2?(x).(x w))

12

MSTs for 7: Step by Step

Output case P = u;!(w}).Q
o First step A'%(-)g = D([-]}) : 7 = pHO

A% (uit(w).Q) g = a?(%).uil(W).Ggs! (%) | A5 (Qo)g (0= (ui: $) 7 {Uw1/ui}: {})

where W = Az1. (Gi1'() | ck17().-217(x). gl (x) | ch2?(x).(x w))

e Second step A5(-)g = [AK(-)g]? : 7 — prm

AL (uit(w)). Q) g = a?(X)-(v a) (uil{a). (3! () | A5 (Qo)g |
at(y).y?z1).ckr1{z1) | ck+1?(z1).217(x).Chr2 ' (x) |

Ck+2?(x).(v) (x!(s).5K(w))))

12

MSTs for 7: Step by Step

Output case P = u;!(w}).Q
o First step A'%(-)g = D([-]}) : 7 = pHO
A% (0 (w).Q) g = a?(%).uil{ W) T3l (%) | A573(Q0) g (0 = (ui: $) 7 {ti+1/ui}: {})
where W = Azy. (61! () | cip120)-212(x)-Tera! (%) | crsa?(x). (x W)
o Second step A (-); = [AX(-)]2 : 7w = um

AL (uit(w)). Q) g = a?(X)-(v a) (uil{a). (3! () | A5 (Qo)g |
at(y).y?z1).ckr1{z1) | ck+1?(z1).217(x).Chr2 ' (x) |

Ck+2?(x).(v) (x!(s).5K(w))))

F(P)= (o) (a!() | A (P))

12

MSTs for 7: Example

P implements channel u of type S = ?(Int);?(Int);!(Bool);end:

P=(vu:S)(w!u).u?(a).u?(b).ul(a > b).0 | w?(x).x!(5).x!(4).x7(b).0)
A B

MSTs for 7: Example

P implements channel u of type S = ?(Int);?(Int);!(Bool);end:

P=(vu:S)(w!u).u?(a).u?(b).ul(a > b).0 | w?(x).x!(5).x!(4).x7(b).0)
A B

The decomposition of P:
F(P)=(vc,..., o25)(@!().0 | (v ur)er?().@Y).c3!() | A (Ad') | A:CB(BJ’))

A2(A) AS(B)
2?()-(v a1) (wal(ar). (c13?()- W1 ?(ya)- cia'(ya) |
G!() | A2(A) | (v s1)(c1a?(y)-cs1{y)-c16!() |
a?(y1)-n?(z1).GNaz) | cs?(ya)-(vs") (ya!(s").s"V(s1).0) |
c3?(z1).z17(x).ca!(x) | c167()-(v a3) (s1!(a3).(@21!() | c217().0 |
ca?(x).(v) (x(s). 3@, T2, T3)))) a37(ys)- ys2(x1, %2, 33). (ci7'() | AT (B)))))

MSTs for 7: Example

AZ(A)
?().(va1)(wal(ar). (
Gl() | AZ(A) |
a?(y1)n?(z1).GN) |
c3?(z1).217(x).cal(x) |
[

e ?(x).(vs)(x(s). 51y, Ta, T3))))

A13 (B)

c13?()- w1 ?(ya)- cia'(va) |
(vsi)(cia?(y)-cis/(y)-ci6
ci5?(ya)-(vs”) (yal(s").s
ci6?()-(v a3)(s1!(a3). (@21

a3?(ys). y5?(x1, X2, X3).

Minimal STs

W1'

My =2((?

M, =
Mz =

= H((7(?((?(Mr, M2, M3))))))
(?((?(Int))))))
2((7(2((7(Int))))))

= 1((?(?((?(Bool))))))

6'() |
s"I(s
1)
(a7

\
a7

1):0) |
()

)1 AT (B)))

14

An Optimized Decomposition

e Although conceptually simple, the function F(-) obtained by “decompose by
composition” induces redundancies
e Suboptimal features:

1. channel redirections
2. redundant synchronizations
3. the structure of trio is lost

e Redundancies most prominent when treating recursive names and processes

15

An Optimized Decomposition

e Although conceptually simple, the function F(-) obtained by “decompose by
composition” induces redundancies
e Suboptimal features:
1. channel redirections
2. redundant synchronizations
3. the structure of trio is lost
e Redundancies most prominent when treating recursive names and processes
e F*(-)is an optimized decomposition function:

1. removes redundant synchronizations
2. use native support for recursion in 7
3. recovers trio structure

Optimized decomposition on types: H*(-)

15

Optimized Decomposition: Example

P implements channel u of type S = ?(Int);?(Int);!(Bool);end:

P=(vu:S)(w!(u).u?(a).u?(b).ul{a> b).0 | w?(x).x!(5).x!(4).x?(b).0)
A B

The optimized decomposition:

FH(P) = (v &) (@) | (v un, s, us)er?()- 1) 61} | A2(A0) | AS(Bo))

22(A0) 45(80)
CQ?(). W1!<ﬂ1,U2,ﬁ3>. C73'<> ‘ Cs?(). Wl?(Xl,XQ,Xg,). 7! <X17 X2, X3> ’
C3?(). U]_?(a). cT;'(a) ‘ C7?(X1,X2,X3). X1!<5>. CT;!<X2, X3> |
C4?(). Ug?(b). cT;!(a, b> | Cg?(XQ, X3). X1!<4>. C79!<X3> |
C5?(). U3!<a > b> ?6|<> ’ C67()0 Cg?(XQ). X3?(b1). ?0'0 ‘ Clo?().o

16

Decomposing Session Types

A= u?(a).u?(b).ul{(a > b)).0

u : ?(Int);?(Int);!(Bool);end

|

L FH(A) [

C3?().u1?(a.).cf4!<a> | ca?(a).up?(b).c5!(a, b) || c57(a, b).u.3!(a > b).c!()

5
up : ?(Int) up : ?(Int) usz : (Bool)
a3 ?() cs 2 ?(Int) cs : ?(Int, Int)

17

Improvements: Comparing Types Decompositions

H()
M if S=end
H(CyS) =] € o=
Mc, H(S) otherwise

where

Mc =1 HONN

Mc if S=end
Mc, H(S) otherwise

H(?(C);S) :{

where

Mc =2((2(2(CHONN)

18

Improvements: Comparing Types Decompositions

H(-) H(-)
o Mc if S =end . oy _ Mc if S =end
Hler3) = {I\/IC,H(S) otherwise (e 5) {MC,’H*(S) otherwise
where where
Me =12 Mc =1(1*(C))
H(C): 5) = {MC if S = end MO S) = {/\/Ic if S = end
Mc, H(S) otherwise Mc ,H*(S) otherwise

where where

Mc =2((2(2(CHONN) Mc =7(H*(C))

18

Handling Recursive Processes and Recursive Names

Consider process
R=uX.r?(z).rl'{(—=z).r?(z).r'{z). X
Se— S N
t1 %] t3 ta
where channel r implements the type

S = pt.?2(Int);!(Int);t

e Type S is decomposed into
S1 = pt.7(Int);t So = pt.!(Int);t

e Trios in F*(R) must satisfy two properties:
1. mimic recursive behaviour
2. each instance should use the same decomposition of channel r, that is (11, r2)

19

Handling Recursive Processes and Recursive Names, Intuitively

OlIOCIOE

20

Handling Recursive Processes and Recursive Names, Intuitively

ry :pt.?(Int);t

ool lloES

20

Handling Recursive Processes and Recursive Names, Intuitively

ry :pt.?(Int);t

ool lloES

ry ot (Int);t

DIOI@®|

20

Handling Recursive Processes and Recursive Names, Intuitively

ry :pt.?(Int);t

O @) -

r: ,ut'(lnt)
@ | @ @)=
ut ?(Int) D pt. ?(Int)-

@I@I@IQ

20

Handling Recursive Processes and Recursive Names, Intuitively

The trio structure for R = puX. r?(z). rl/(—z).r?(z). r!(z). X can be intuitively depicted as:
e N — N N~

t1 to t3 ta
rn 51 rn 51 n . 51 r 51 51
f2 52 f2 52 r2 52

21

Handling Recursive Processes and Recursive Names

R=uX.r?(z).rl'{(—=z).r?(z).r'{z). X
e~

t1 tr t3 ty

F*(R) implements the circular structure of R using six recursive parallel processes:

W, n).uX. ek 2y, y2). c/Vy1, y2). X | to
pX.c{(y1, y2) 1 %(z1). 5Ky, y2, 21). X | ty
pX.c§2(y1, y2, 21).y27(—21).c ! {y1, y2). X | t
pX.c5?(y1, y2) 1 ?(z1)- 4 y1, yo, z1). X | t3

pX.ci? (1, y2, z1).y27(21)-cE Ny v2) X | ta
pX.c§2(y1, y2)-l ek lya, yo)- X ts

22

Technical Results

e Quantifying improvements:

number of prefixes in F(P) > = - number of prefixes in F*(P)

w| ol

e Static correctness (Typability):
= P implies H*(I') = F*(P)

e Dynamic correctness:
P =M F*(P)

where ~M is a form of weak bisimilarity, a mild modification of the characteristic
bisimilarity by Kouzapas et al.

23

Conclusion

Related Work: Session Types into Linear Types (1/2)

Dardha, Giachino & Sangiorgi (PPDP'12) encode session-typed processes into processes
with linear types (Kobayashi et al.):

e Sequentiality handled via a “detour” from session type theories
e Processes refactored to carry over sequentiality, in a continuation-passing style

e Implementations in Scala (Scalas et al. - ECOOP’16), OCaml (Padovani, JFP'17),
Agda (Ciccone & Padovani, PPDP'20)

— Differently, our work clarifies the role of sequential composition in session types, both
conceptually and formally, using session types themselves.

24

Related Work: A Comparison with Dardha et al. (2/2)

A= wl(T).u?(a).u?(b).ul(a > b).0

Minimal STs

up 2 ?(Int), wa : ?(Int), us : (Bool)
wy @ [{(I{Int), !{Int), ?(Bool))

(vc)zW(T, c).
u?(a, c’).
c’?(b, c").
(v a>b,c").0

Linear Types

u : li[Int, i[Int, I,[Bool, unit]]]
w : lp[lo[Int, Io[Int, /;[Bool, unit]]], unit]

Conclusion: Minimal Session Types for 7 (1/2)

e A new minimality result for the session-typed 7-calculus by two decompositions:
1. F(-): A composition of encodability results and minimality results for HO
2. F*(-): An optimization without redundant synchronizations and with native recursion
e Main takeaway:
The minimality result based on MSTs is independent from communicated objects:
« abstractions in HO (ECOOP 2019)
+ names in 7 (This work)

26

Conclusion: Minimal Session Types for 7 (2/2)

e Potential for streamlining known session types frameworks, by removing redundancies.
e Bridging the gap between theories of session types and type systems in actual PLs.

In the Extended Version

e Full technical details
e Multiple examples of both decompositions

e https://arxiv.org/abs/2107.10936 .

https://arxiv.org/abs/2107.10936

Minimal Session Types for the 7-calculus

PPDP 2021, Tallinn

Alen Arslanagi¢, Jorge A. Pérez, and Anda-Amelia Palamariuc

University of Groningen, The Netherlands

UNIFYING
CeRRECTNESS FOR
CeMMUNICATING
S*FTWARE

Extra Slides

Syntax

n:=ab | s3
uw =n | x,y,z
viw = | [P [7.7]

P,Q = ul(V).P | u?(x).P

| [Vu] | P1Q | (vn)P | O | [X| uXP

Figure 1: Syntax of HO7x. The sub-language HO lacks shaded constructs, while 7 lacks
constructs.

Semantics

(Ax. P)u — P{4/x} [App]
n{(V).P|A?(x).Q — P | Q{V/x} [Pass]
P— P = (vn)P — (vn)P' [Res]
P—P =P Q—P|Q [Par]
P=Q —Q=P=P—F [Cong]

Pl‘PzEPQ‘Pl Pl‘(PQ‘P3)E(P1’P2)‘P3
PlO=P P|l(vmQ=(vn)(P|Q) (n¢fn(P))
(vn)0=0 puX.P = P{nX.P/x} P=QiftP=,Q

Figure 2: Operational Semantics of HO7.

29

Session Types

U:=C|L C =S5 1|(S) | (L)
S w=NU);S | 2(U);S
| pt.S | t | end

L=U—=o| U—o

U :=C—o | C—oo C =M | (U
v n=end | t M =~ | Uy | 2(U);y | pt.M

Figure 3: STs for HOx (top) and MSTs for HO (bottom).

30

Type encoding of 7w into HO

[ut(w).P]L °E ul(Az. 22(x).(x w)).[P]L
[u?(x: C).Ql; °E u?(y).(vs)(y s[5! (Ax. [Q]}).0)

[P QI = [Pl | [QI}

[(v n)PI} = (v n)[P]}
[0]; °= ©

[uX.PI} S (vs)(SHV).0 | s2(zx)-[P]% (xom) where (/i = £n(P))

V = A(l,y)- y?(zx)- LIPIE 1xoa o

XD} = (vs)(zx (A,5) | 51{zx).0) (7 = g(X))

Figure 4: Typed encoding of 7 into HO, selection from [KPY19]. Above, fn(P) is a
lexicographically ordered sequence of free names in P. Maps | - || and Hﬂa are in Def. 1 and Fig. 5. 31

Auxiliary Mappings

Definition (Auxiliary Mappings)
We define mappings | - | and | - | asfollows:

e |- : 2V — V¥ isamap of sequences of lexicographically ordered names to
sequences of variables, defined inductively as:

lel = e

In, M| = xn, |M| (x fresh)

« Given a set of session names and variables o, themap | - | : HO — HOisasin Fig. 5.

32

Auxiliary Mapping

[wlAx. Q).P] “E ulx [Q),)-IPI, [we{li: Pitiei], *E us {li < |Pi] Yies

[w?(x).P] *E u?(x).|P], lw<alP] °E ual|P],
L(wn)P], "= wn)lPl,, O Qw], = (L@l) u
[P1Ql, = [P, I 1el, [xw], *= xu
0], *= 0

X, if wis a name n and n & o (x fresh)

In all cases: u =
w otherwise: w is a variable or a name nand n€ o

Figure 5: Auxiliary mapping used to encode HO7 into HO.

33

Type encoding of 7w into HO

Types:

(1" *=

(end)! oet

£ (2((S)! —00); end) —o

(
(2({(S)") —o); end) —oo
{

= (U] (s)!
2([U]); (S)!
Sy (ut.S) °Z it (S):
end (t)l def 4

34

Typed encoding of HO into =

Terms:
[ul(Ax. Q).P]? °E
{(Va)(u!<a>'([[P]]2| x a?(y).y?(x).[Q]%) if £5(Q) =0
(va)(ul{a).([PI* | a?(y).y?(x).[Q]?)) otherwise
[u?(x).P]? °E u2(x).[P]?
[x u]? °E (vs)(x!(s).5!(u).0)
[(Ox. P)ul? *E (vs)(s2(x).[P]? | 5/(u).0)
Types:
(1{S—o0); S1)* = 1{(2((S)*); end)); (S1)
(2(S—00); S1)* = 2((2((5)?); end)); (S1)°

35

MSTs for 7

C = M| (M)

v == end | t

M =5 | KCsivy | AC)iy | pt.M

Figure 7: Minimal Session Types for 7

36

Decomposition of types

H((S)) = (H(S))

M if S’ = end

M, H(S") otherwise

where M =1{(?(?((?(H(S)); end)); end); end)); end

H(1(S); S") :{

M if S’ = end
M, H(S") otherwise
where M =?((?(?((?(H(S)); end)); end); end)); end

H(?(S); S) = {

Figure 8: Decomposition of types H(-)

37

Decomposition of types

H(ut.S) = {R’(S) if ut.S is tail-recursive
pt.H(S) otherwise
R'(1(S); §') = pt.1{(?(?((?(H(S)); end)); end); end)); t, R'(S')
R'(2(S); S) = ut2(2(2((2(H(S)); end)); end), d));t,R'(S")

RO((S) S) = RA(S) RU((S):S) = R (S)
R (ut.S) = R™*(S)
Figure 9: Decomposition of types H/(-)

38

Decomposition of types Optimized

HA (St 2 Sn) = HA(S1)s s H(S)
HA((C): S) = I{H*(C)); end if S = end
ST {H*(C)); end, H*(S) otherwise
H(2(C); S) = ?2(H*(C)); end if S =end
ST ?(H*(C));end,H*(S) otherwise

Figure 10: Decomposition of types H*()

39

Decomposition of types Optimized

[
=t —
5 3@
— T X
» S
o ol |
£ = = =
2 o LY
o O
O
N
R R 5 ErRR
L | | | ||
HAOEO OO
e
Sy IO
~— ~ ~—~— ~ X
® S i
R

Figure 11: Decomposition of types H*(-)

40

Type System

(SESS) (SH)
M0 {u:St+urS Fu:U;0;0Fu>U

(LVAR) (RVAR)
M {x: C—ooh0F x> C—o0 LX:ADAFX>o

(ABS) (ApP)
GAALEPre T0,00Ex>C TIANAEVECwo we{—,—} [0AFu>C
MN\x; A A\As F Ax. P> C—o0 MA AL A Vuso
(PrROM) (EPROM) (END)

HO;0F Ve C—oo MHMAXx:C—oo;AEPro TNAFPET uddom(lAA)
rg:0FVeoC—o Ix:C—ao;NAFPB>o MA;Au:end- Ppo 41

Type System

(Rec) (PAR)
XA AFP>o FAs A EPbe i=1,2 (NiL)
0, AFuX.Poo AL A A, Ao - Py | Pao Fg:0F0>o
(SEND)

u:SelA;, Ay TN AT EPoo TN A VU
M AL A (A1, D)\ u: S),u:(U); S ul(V).Pro

(Acc)
(Rev) TALGALEPoo T50,0F un (U)
MAGALu:SEPBo T A A x> U H A Ao ExoUd Ue{S, L}

M\x; A1\A2; A\Ap, u :?2(U); S E u?(x).P>o T\x; A1\Ag; A1\Ap - u?(x).P>o

42

Type System

(Acc)
CAGALEPoo T0:0 us (U)
A Ao ExoUd Ue{S, L}
M\x; Ai\A2; A1\As F u?(x).Ppo

(BrA) (SEL)
Viel T;NAu:5FPi>o HGAAu:SiEPro jel
CA A u: &{li: SitierFus{li: Pi}iei>o CAN A u:@{li:SitierFu<alj.Proo

(RESS) (RES)
MAAs:5,5:5FPro S dual S Ma:(S);,NAFPro
NANAE(vs)Pro HAAE(va)Pro

Figure 14: Typing Rules for HOx (including selection and branching constructs). 43

Minimal characteristic trigger process

Definition (Minimal characteristic processes)

(2(C):) u2(x).(Euiss, - -, Ui iges))-0 | (C)F)
(HCY; S)¥ °E il {(C)e) tWujsn, - -, Uipg(s))-0
(end)¥ “< 0
() n{(C)e).t1{w).0
(ut.S)¢ = (S{end/t})l
(S)e "= 5 (|5 = |G(S)], 3 fresh)

((C))e = (a1 fresh)

Definition (Minimal characteristic trigger process)
Given a type C, the trigger process is

tmn v €2 12(x).(vs1)(s12(7)(CY | 5T1(7).0)

MST-Bisimilarity

A typed relation 3 is an MST bisimulation if for all '1; A1 F Py R Iy; Ao B Q1

1. Whenever I'1; A1 - Py v mlﬂ)v:q)

that [p; A, - @ ™ML (D

A%; N} F Py then there exist @2, A%, and o, such
AL F Qo where vo, < v and, for a fresh t,
AT E (wm)(Py|t<cv:G)R

AVE (vm)(Qa | t <g vo: Gy)

2. Whenever [1; Al - Py % AL F P, then there exist Qo A}, and oy such that

I'2 Agl—Ql A/ |—QQ where VU\,chand I'1 A/ |—P2§R|_2 A2|—Q2

3. Whenever I'1; A1 F P —> A F P,, with ¢ not an output or input, then there exist
Q2 and A such that 'p; Ao - Qq N ALE @ and T A E P RTo AL E Qo and
sub(¢) = n implies sub(¥) = A.

4. The symmetric cases of 1, 2, and 3. a5

Results: Typability

Theorem (Typability of Breakdown)

Let P be an initialized 7 process. If T; A, A, = P> o, then H(I"), ®'; H(A),© + AKX (P)g >0,
where k > 0;7 = dom(A,); " = [I,cz ¢ : ((?(R"*(AL(r))); end)); and balanced(©') with

dom(©') = {ck, Ckt1s - -+ Chp [P1—1} U{Chr1s -+ Chp [P1-1)
such that ©'(¢x) =7(+); end.
Theorem (Minimality Result for 7)

Let P be a closed m process, with i = fn(P) and v = rn(P). If [; A, A, = P> o, where A,
only involves recursive session types, then
H(Fo); H(Ac), H(A o) b F(P) > o, where o = {init(u)/z}.

46

Optimized Results: Typability

Theorem (Typability of Breakdown)

Let P be an initialized process. If I'; A - P > o then
H(M\X); H* (A\X),©FAF(P)>o (k> 0)

where x C £n(P) and y such that indexedr a(Yy, X). Also, balanced(©) with

dom(©) = {ck, k1, - Ch|p|—1} Y {Chki1s - Chgip—1}
and ©(c,) =?(M); end, where M = (H*(T"), H*(A))(¥).
Theorem (Minimality Result for 7, Optimized)

Let P be a 7 process with u = £n(P). IfT; A = P>othen H*(To); H*(Ac) = F*(P) >0,
where o = {init(v)/5},

47

Results: Operational Correspondence

Theorem (Operational Correspondence)

Let P be a w process such that 'y; A1 - Py. We have

AR P &M HH) HA(A) - F*(P)

48

Related Work: CPS Cont’d

P implements channel u of type S = 7Int; ?Int; |Bool; end:

P=(vu:S)(wlu).u?(a).u?(b).ul{a> b).0 | w?(x).x!(5).x!(4).x?(b).0)
A B

CPS encoding
[Alwsz = (v ¢)zWu, c).u?(a, c').c?(b, c").(v)"V (a > b,c").0
[Blwesz = 22(x, ¢).(v)x1(5, ¢').(v)14, ¢").c""?(b, c'").0
[S] = /i[Int, /;[Int, I,[Bool, unit]]]
[S] = lo[Int, li[Int, Io[Bool, unit]]]

49

References

[4 Dimitrios Kouzapas, Jorge A. Pérez, and Nobuko Yoshida, On the relative expressiveness
of higher-order session processes, Inf. Comput. 268 (2019).

50

	Context and Key Questions
	This Work
	Conclusion
	Extra Slides

